LeCAR:利用上下文增强汽车规格检索

Kuan-Wei Wu, Tz-Huan Hsu, Yen-Hao Huang, Yi-Shin Chen, Ho-Lung Wang, Bing-Jing Hsieh, Chi-Hung Hsu
{"title":"LeCAR:利用上下文增强汽车规格检索","authors":"Kuan-Wei Wu, Tz-Huan Hsu, Yen-Hao Huang, Yi-Shin Chen, Ho-Lung Wang, Bing-Jing Hsieh, Chi-Hung Hsu","doi":"10.1109/IRI58017.2023.00038","DOIUrl":null,"url":null,"abstract":"In the domain of automotive manufacturing, specification documents represent intricate descriptions detailing every aspect of a product, design, or service. Conventionally, these specifications demand the deployment of expert teams to manually identify crucial data from the extensive documentation. The need to automate the extraction of candidate information from these documents is increasingly pressing in this industry. This research encounters two central challenges: Firstly, the queries for the specifications input by users are typically concise and ambiguous; secondly, not every word in a query carries the same significance. In response to these challenges, we propose LeCAR, which exploits contextual data to clarify query sentences and concentrate the search scope. Our experiments validate that the proposed method outperforms existing techniques that employ pre-trained language models, all without necessitating additional training data.","PeriodicalId":290818,"journal":{"name":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LeCAR: Leveraging Context for Enhanced Automotive Specification Retrieval\",\"authors\":\"Kuan-Wei Wu, Tz-Huan Hsu, Yen-Hao Huang, Yi-Shin Chen, Ho-Lung Wang, Bing-Jing Hsieh, Chi-Hung Hsu\",\"doi\":\"10.1109/IRI58017.2023.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the domain of automotive manufacturing, specification documents represent intricate descriptions detailing every aspect of a product, design, or service. Conventionally, these specifications demand the deployment of expert teams to manually identify crucial data from the extensive documentation. The need to automate the extraction of candidate information from these documents is increasingly pressing in this industry. This research encounters two central challenges: Firstly, the queries for the specifications input by users are typically concise and ambiguous; secondly, not every word in a query carries the same significance. In response to these challenges, we propose LeCAR, which exploits contextual data to clarify query sentences and concentrate the search scope. Our experiments validate that the proposed method outperforms existing techniques that employ pre-trained language models, all without necessitating additional training data.\",\"PeriodicalId\":290818,\"journal\":{\"name\":\"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI58017.2023.00038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI58017.2023.00038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在汽车制造领域,规范文档代表了详细描述产品、设计或服务的各个方面的复杂描述。通常,这些规范要求部署专家团队,从大量文档中手动识别关键数据。在这个行业中,自动化从这些文档中提取候选信息的需求日益迫切。本研究面临两个主要挑战:首先,用户输入的规范查询通常是简洁和模糊的;其次,不是查询中的每个单词都具有相同的意义。为了应对这些挑战,我们提出了LeCAR,它利用上下文数据来澄清查询句子并集中搜索范围。我们的实验验证了所提出的方法优于使用预训练语言模型的现有技术,所有这些技术都不需要额外的训练数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LeCAR: Leveraging Context for Enhanced Automotive Specification Retrieval
In the domain of automotive manufacturing, specification documents represent intricate descriptions detailing every aspect of a product, design, or service. Conventionally, these specifications demand the deployment of expert teams to manually identify crucial data from the extensive documentation. The need to automate the extraction of candidate information from these documents is increasingly pressing in this industry. This research encounters two central challenges: Firstly, the queries for the specifications input by users are typically concise and ambiguous; secondly, not every word in a query carries the same significance. In response to these challenges, we propose LeCAR, which exploits contextual data to clarify query sentences and concentrate the search scope. Our experiments validate that the proposed method outperforms existing techniques that employ pre-trained language models, all without necessitating additional training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信