可疑活动自动检测方法的性能评价

S. Gurav, V. Khandare
{"title":"可疑活动自动检测方法的性能评价","authors":"S. Gurav, V. Khandare","doi":"10.1109/ICONAT57137.2023.10080627","DOIUrl":null,"url":null,"abstract":"The video monitoring is hectic task when large dataset of surveillance video is to be monitored. The errors involved in monitoring task and suspicious activity detection may lead to missed detection performance. The automation of suspicious activity detection is the need of the time. In this paper, the performance evaluation of suspicious activity detection of video data is shown. The proposed method of combination of GLCM, harries corner detection, speeded up robust features, shows average 96% percent accuracy of suspicious activity detection on self-designed dataset.","PeriodicalId":250587,"journal":{"name":"2023 International Conference for Advancement in Technology (ICONAT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of Automatic Suspicious Activity Detection Method\",\"authors\":\"S. Gurav, V. Khandare\",\"doi\":\"10.1109/ICONAT57137.2023.10080627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The video monitoring is hectic task when large dataset of surveillance video is to be monitored. The errors involved in monitoring task and suspicious activity detection may lead to missed detection performance. The automation of suspicious activity detection is the need of the time. In this paper, the performance evaluation of suspicious activity detection of video data is shown. The proposed method of combination of GLCM, harries corner detection, speeded up robust features, shows average 96% percent accuracy of suspicious activity detection on self-designed dataset.\",\"PeriodicalId\":250587,\"journal\":{\"name\":\"2023 International Conference for Advancement in Technology (ICONAT)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference for Advancement in Technology (ICONAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONAT57137.2023.10080627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference for Advancement in Technology (ICONAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONAT57137.2023.10080627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在监控视频数据量较大的情况下,视频监控是一项繁重的工作。监视任务和可疑活动检测中涉及的错误可能导致错过检测性能。可疑活动检测的自动化是时代的需要。本文给出了视频数据可疑活动检测的性能评价。提出的方法结合GLCM和哈瑞斯角点检测,加快了鲁棒性特征,在自设计数据集上可疑活动检测的平均准确率达到96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Evaluation of Automatic Suspicious Activity Detection Method
The video monitoring is hectic task when large dataset of surveillance video is to be monitored. The errors involved in monitoring task and suspicious activity detection may lead to missed detection performance. The automation of suspicious activity detection is the need of the time. In this paper, the performance evaluation of suspicious activity detection of video data is shown. The proposed method of combination of GLCM, harries corner detection, speeded up robust features, shows average 96% percent accuracy of suspicious activity detection on self-designed dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信