Robbert Reijnen, Yingqian Zhang, Z. Bukhsh, Mateusz Guzek
{"title":"学习适应遗传算法求解多目标柔性作业车间调度问题","authors":"Robbert Reijnen, Yingqian Zhang, Z. Bukhsh, Mateusz Guzek","doi":"10.1145/3583133.3590700","DOIUrl":null,"url":null,"abstract":"The configuration of Evolutionary Algorithm (EA) parameters is a significant challenge. While previous studies have examined methods for configuring EA parameters, there remains a lack of a general solution for optimizing these parameters. To overcome this, we propose DEMOCA, an automated Deep Reinforcement Learning (DRL) method for online control of multi-objective EA parameters. When tested on a multi-objective Flexible Job Shop Scheduling Problem (FJSP) using a Genetic Algorithm (GA), DEMOCA was found to be as effective as grid search while requiring significantly less training cost.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to Adapt Genetic Algorithms for Multi-Objective Flexible Job Shop Scheduling Problems\",\"authors\":\"Robbert Reijnen, Yingqian Zhang, Z. Bukhsh, Mateusz Guzek\",\"doi\":\"10.1145/3583133.3590700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The configuration of Evolutionary Algorithm (EA) parameters is a significant challenge. While previous studies have examined methods for configuring EA parameters, there remains a lack of a general solution for optimizing these parameters. To overcome this, we propose DEMOCA, an automated Deep Reinforcement Learning (DRL) method for online control of multi-objective EA parameters. When tested on a multi-objective Flexible Job Shop Scheduling Problem (FJSP) using a Genetic Algorithm (GA), DEMOCA was found to be as effective as grid search while requiring significantly less training cost.\",\"PeriodicalId\":422029,\"journal\":{\"name\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583133.3590700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning to Adapt Genetic Algorithms for Multi-Objective Flexible Job Shop Scheduling Problems
The configuration of Evolutionary Algorithm (EA) parameters is a significant challenge. While previous studies have examined methods for configuring EA parameters, there remains a lack of a general solution for optimizing these parameters. To overcome this, we propose DEMOCA, an automated Deep Reinforcement Learning (DRL) method for online control of multi-objective EA parameters. When tested on a multi-objective Flexible Job Shop Scheduling Problem (FJSP) using a Genetic Algorithm (GA), DEMOCA was found to be as effective as grid search while requiring significantly less training cost.