学习适应遗传算法求解多目标柔性作业车间调度问题

Robbert Reijnen, Yingqian Zhang, Z. Bukhsh, Mateusz Guzek
{"title":"学习适应遗传算法求解多目标柔性作业车间调度问题","authors":"Robbert Reijnen, Yingqian Zhang, Z. Bukhsh, Mateusz Guzek","doi":"10.1145/3583133.3590700","DOIUrl":null,"url":null,"abstract":"The configuration of Evolutionary Algorithm (EA) parameters is a significant challenge. While previous studies have examined methods for configuring EA parameters, there remains a lack of a general solution for optimizing these parameters. To overcome this, we propose DEMOCA, an automated Deep Reinforcement Learning (DRL) method for online control of multi-objective EA parameters. When tested on a multi-objective Flexible Job Shop Scheduling Problem (FJSP) using a Genetic Algorithm (GA), DEMOCA was found to be as effective as grid search while requiring significantly less training cost.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to Adapt Genetic Algorithms for Multi-Objective Flexible Job Shop Scheduling Problems\",\"authors\":\"Robbert Reijnen, Yingqian Zhang, Z. Bukhsh, Mateusz Guzek\",\"doi\":\"10.1145/3583133.3590700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The configuration of Evolutionary Algorithm (EA) parameters is a significant challenge. While previous studies have examined methods for configuring EA parameters, there remains a lack of a general solution for optimizing these parameters. To overcome this, we propose DEMOCA, an automated Deep Reinforcement Learning (DRL) method for online control of multi-objective EA parameters. When tested on a multi-objective Flexible Job Shop Scheduling Problem (FJSP) using a Genetic Algorithm (GA), DEMOCA was found to be as effective as grid search while requiring significantly less training cost.\",\"PeriodicalId\":422029,\"journal\":{\"name\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3583133.3590700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

进化算法(EA)参数的配置是一个重要的挑战。虽然以前的研究已经检查了配置EA参数的方法,但仍然缺乏优化这些参数的通用解决方案。为了克服这个问题,我们提出了DEMOCA,一种用于在线控制多目标EA参数的自动深度强化学习(DRL)方法。利用遗传算法对多目标柔性作业车间调度问题(FJSP)进行了测试,发现DEMOCA算法与网格搜索一样有效,而且所需的培训成本显著降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Adapt Genetic Algorithms for Multi-Objective Flexible Job Shop Scheduling Problems
The configuration of Evolutionary Algorithm (EA) parameters is a significant challenge. While previous studies have examined methods for configuring EA parameters, there remains a lack of a general solution for optimizing these parameters. To overcome this, we propose DEMOCA, an automated Deep Reinforcement Learning (DRL) method for online control of multi-objective EA parameters. When tested on a multi-objective Flexible Job Shop Scheduling Problem (FJSP) using a Genetic Algorithm (GA), DEMOCA was found to be as effective as grid search while requiring significantly less training cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信