自我承认技术债务检测中f1分数的改进测量

William Aiken, Paul K. Mvula, Paula Branco, Guy-Vincent Jourdan, M. Sabetzadeh, H. Viktor
{"title":"自我承认技术债务检测中f1分数的改进测量","authors":"William Aiken, Paul K. Mvula, Paula Branco, Guy-Vincent Jourdan, M. Sabetzadeh, H. Viktor","doi":"10.1109/TechDebt59074.2023.00011","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence and Machine Learning have witnessed rapid, significant improvements in Natural Language Processing (NLP) tasks. Utilizing Deep Learning, researchers have taken advantage of repository comments in Software Engineering to produce accurate methods for detecting Self-Admitted Technical Debt (SATD) from 20 open-source Java projects’ code. In this work, we improve SATD detection with a novel approach that leverages the Bidirectional Encoder Representations from Transformers (BERT) architecture. For comparison, we re-evaluated previous deep learning methods and applied stratified 10-fold cross-validation to report reliable F1-scores. We examine our model in both cross-project and intra-project contexts. For each context, we use re-sampling and duplication as augmentation strategies to account for data imbalance. We find that our trained BERT model improves over the best performance of all previous methods in 19 of the 20 projects in cross-project scenarios. However, the data augmentation techniques were not sufficient to overcome the lack of data present in the intra-project scenarios, and existing methods still perform better. Future research will look into ways to diversify SATD datasets in order to maximize the latent power in large BERT models.","PeriodicalId":131882,"journal":{"name":"2023 ACM/IEEE International Conference on Technical Debt (TechDebt)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Measuring Improvement of F1-Scores in Detection of Self-Admitted Technical Debt\",\"authors\":\"William Aiken, Paul K. Mvula, Paula Branco, Guy-Vincent Jourdan, M. Sabetzadeh, H. Viktor\",\"doi\":\"10.1109/TechDebt59074.2023.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence and Machine Learning have witnessed rapid, significant improvements in Natural Language Processing (NLP) tasks. Utilizing Deep Learning, researchers have taken advantage of repository comments in Software Engineering to produce accurate methods for detecting Self-Admitted Technical Debt (SATD) from 20 open-source Java projects’ code. In this work, we improve SATD detection with a novel approach that leverages the Bidirectional Encoder Representations from Transformers (BERT) architecture. For comparison, we re-evaluated previous deep learning methods and applied stratified 10-fold cross-validation to report reliable F1-scores. We examine our model in both cross-project and intra-project contexts. For each context, we use re-sampling and duplication as augmentation strategies to account for data imbalance. We find that our trained BERT model improves over the best performance of all previous methods in 19 of the 20 projects in cross-project scenarios. However, the data augmentation techniques were not sufficient to overcome the lack of data present in the intra-project scenarios, and existing methods still perform better. Future research will look into ways to diversify SATD datasets in order to maximize the latent power in large BERT models.\",\"PeriodicalId\":131882,\"journal\":{\"name\":\"2023 ACM/IEEE International Conference on Technical Debt (TechDebt)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 ACM/IEEE International Conference on Technical Debt (TechDebt)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TechDebt59074.2023.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 ACM/IEEE International Conference on Technical Debt (TechDebt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TechDebt59074.2023.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人工智能和机器学习见证了自然语言处理(NLP)任务的快速、重大改进。利用深度学习,研究人员利用软件工程中的存储库注释,从20个开源Java项目的代码中产生准确的方法来检测自我承认的技术债务(SATD)。在这项工作中,我们利用一种利用变压器(BERT)架构的双向编码器表示的新方法改进了SATD检测。为了进行比较,我们重新评估了以前的深度学习方法,并应用分层10倍交叉验证来报告可靠的f1分数。我们在跨项目和项目内部环境中检查我们的模型。对于每种情况,我们使用重采样和复制作为增强策略来解释数据不平衡。我们发现,在跨项目场景的20个项目中的19个项目中,我们训练的BERT模型比之前所有方法的最佳性能都有所提高。然而,数据增加技术不足以克服项目内部情景中存在的数据缺乏,现有方法仍然表现更好。未来的研究将着眼于如何使SATD数据集多样化,以最大化大型BERT模型的潜在能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring Improvement of F1-Scores in Detection of Self-Admitted Technical Debt
Artificial Intelligence and Machine Learning have witnessed rapid, significant improvements in Natural Language Processing (NLP) tasks. Utilizing Deep Learning, researchers have taken advantage of repository comments in Software Engineering to produce accurate methods for detecting Self-Admitted Technical Debt (SATD) from 20 open-source Java projects’ code. In this work, we improve SATD detection with a novel approach that leverages the Bidirectional Encoder Representations from Transformers (BERT) architecture. For comparison, we re-evaluated previous deep learning methods and applied stratified 10-fold cross-validation to report reliable F1-scores. We examine our model in both cross-project and intra-project contexts. For each context, we use re-sampling and duplication as augmentation strategies to account for data imbalance. We find that our trained BERT model improves over the best performance of all previous methods in 19 of the 20 projects in cross-project scenarios. However, the data augmentation techniques were not sufficient to overcome the lack of data present in the intra-project scenarios, and existing methods still perform better. Future research will look into ways to diversify SATD datasets in order to maximize the latent power in large BERT models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信