减小直流并联并联APF机组并联运行零序循环电流的设计参数选择

S. Khadem, M. Basu, M. Conlon
{"title":"减小直流并联并联APF机组并联运行零序循环电流的设计参数选择","authors":"S. Khadem, M. Basu, M. Conlon","doi":"10.1155/2013/381581","DOIUrl":null,"url":null,"abstract":"Capacity enhancement and operational flexibility are two of the important limitations of the centralized shunt APF () unit. These limitations can be conquered by the operation of multiple APF units in parallel and connected back to back by a common DC link capacitor. In that case, a circulating current (CC) flows within the units. This CC flow becomes out of control when the units operate in hysteresis based current controlled mode. One of the difficulties of this CC flow control or reduction is the variable switching frequency of the units. In this paper, the model for CC flow is derived by the switching dynamics study of the units. It is found that the selection of design parameters plays an important role in the amount of CC flow. Detailed simulation, analysis, and real-time performance show how the selection of design parameters affects the CC flow and the reduction of CC flow can also be achieved at an acceptable level by the proper selection of design parameters.","PeriodicalId":412593,"journal":{"name":"Advances in Power Electronic","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Selection of Design Parameters to Reduce the Zero-Sequence Circulating Current Flow in Parallel Operation of DC Linked Multiple Shunt APF Units\",\"authors\":\"S. Khadem, M. Basu, M. Conlon\",\"doi\":\"10.1155/2013/381581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capacity enhancement and operational flexibility are two of the important limitations of the centralized shunt APF () unit. These limitations can be conquered by the operation of multiple APF units in parallel and connected back to back by a common DC link capacitor. In that case, a circulating current (CC) flows within the units. This CC flow becomes out of control when the units operate in hysteresis based current controlled mode. One of the difficulties of this CC flow control or reduction is the variable switching frequency of the units. In this paper, the model for CC flow is derived by the switching dynamics study of the units. It is found that the selection of design parameters plays an important role in the amount of CC flow. Detailed simulation, analysis, and real-time performance show how the selection of design parameters affects the CC flow and the reduction of CC flow can also be achieved at an acceptable level by the proper selection of design parameters.\",\"PeriodicalId\":412593,\"journal\":{\"name\":\"Advances in Power Electronic\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Power Electronic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/381581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Power Electronic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/381581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

容量增强和操作灵活性是集中式并联APF()机组的两个重要限制。这些限制可以通过并联多个APF单元并通过一个公共直流链路电容器背靠背连接来克服。在这种情况下,循环电流(CC)在单元内流动。当单元在基于磁滞的电流控制模式下运行时,这种CC流变得失控。这种CC流量控制或减少的困难之一是机组的开关频率可变。本文通过对机组切换动力学的研究,建立了CC流模型。研究发现,设计参数的选择对连铸流量有重要影响。详细的仿真、分析和实时性能显示了设计参数的选择如何影响CC流量,并且通过适当的设计参数选择也可以在可接受的水平上实现CC流量的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Selection of Design Parameters to Reduce the Zero-Sequence Circulating Current Flow in Parallel Operation of DC Linked Multiple Shunt APF Units
Capacity enhancement and operational flexibility are two of the important limitations of the centralized shunt APF () unit. These limitations can be conquered by the operation of multiple APF units in parallel and connected back to back by a common DC link capacitor. In that case, a circulating current (CC) flows within the units. This CC flow becomes out of control when the units operate in hysteresis based current controlled mode. One of the difficulties of this CC flow control or reduction is the variable switching frequency of the units. In this paper, the model for CC flow is derived by the switching dynamics study of the units. It is found that the selection of design parameters plays an important role in the amount of CC flow. Detailed simulation, analysis, and real-time performance show how the selection of design parameters affects the CC flow and the reduction of CC flow can also be achieved at an acceptable level by the proper selection of design parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信