检查限定公式的大小

P. Liberatore
{"title":"检查限定公式的大小","authors":"P. Liberatore","doi":"10.14569/IJARAI.2014.031205","DOIUrl":null,"url":null,"abstract":"The circumscription of a propositional formula T may not be representable in polynomial space, unless the polynomial hierarchy collapses. This depends on the specific formula T, as some can be circumscribed in little space and others cannot. The problem considered in this article is whether this happens for a given formula or not. In particular, the complexity of deciding whether CIRC(T) is equivalent to a formula of size bounded by k is studied. This theoretical question is relevant as circumscription has applications in temporal logics, diagnosis, default logic and belief revision.","PeriodicalId":323606,"journal":{"name":"International Journal of Advanced Research in Artificial Intelligence","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Checking the Size of Circumscribed Formulae\",\"authors\":\"P. Liberatore\",\"doi\":\"10.14569/IJARAI.2014.031205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The circumscription of a propositional formula T may not be representable in polynomial space, unless the polynomial hierarchy collapses. This depends on the specific formula T, as some can be circumscribed in little space and others cannot. The problem considered in this article is whether this happens for a given formula or not. In particular, the complexity of deciding whether CIRC(T) is equivalent to a formula of size bounded by k is studied. This theoretical question is relevant as circumscription has applications in temporal logics, diagnosis, default logic and belief revision.\",\"PeriodicalId\":323606,\"journal\":{\"name\":\"International Journal of Advanced Research in Artificial Intelligence\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Research in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/IJARAI.2014.031205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Research in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/IJARAI.2014.031205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个命题公式T的边界在多项式空间中可能是不可表示的,除非多项式层次崩溃。这取决于特定的公式T,因为有些可以在很小的空间内限定,而有些则不能。本文考虑的问题是,对于给定的公式,这种情况是否会发生。特别地,研究了判定CIRC(T)是否等价于一个大小以k为界的公式的复杂性。这个理论问题在时间逻辑、诊断、默认逻辑和信念修正中都有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Checking the Size of Circumscribed Formulae
The circumscription of a propositional formula T may not be representable in polynomial space, unless the polynomial hierarchy collapses. This depends on the specific formula T, as some can be circumscribed in little space and others cannot. The problem considered in this article is whether this happens for a given formula or not. In particular, the complexity of deciding whether CIRC(T) is equivalent to a formula of size bounded by k is studied. This theoretical question is relevant as circumscription has applications in temporal logics, diagnosis, default logic and belief revision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信