一种基于学习的电压标度电路延迟模型

Dongning Ma, Siyu Shen, Xun Jiao
{"title":"一种基于学习的电压标度电路延迟模型","authors":"Dongning Ma, Siyu Shen, Xun Jiao","doi":"10.1145/3349567.3351725","DOIUrl":null,"url":null,"abstract":"Dynamic voltage and frequency scaling (DVFS) is a typical method to reduce energy consumption of circuits. However, it may cause timing errors if the frequency is not set properly under scaled voltages. To alleviate this issue, this paper proposes DeVos, a supervised learning model that can predict dynamic delay of voltage-scaled circuits based on their input workload. We measure the dynamic delay using switching activity generated through gate-level simulation of a post place-and-route design in TSMC 45nm process. We then look for features in the input data that influence dynamic path sensitization. Using these features we apply random forest to construct a predictive model trained and tested using random data. Across a wide range of voltage levels, DeVos achieves on average a mean absolute percentage error (MAPE) of less than 5%. To our best knowledge, DeVos is the first dynamic delay model of voltage-scaled circuits and can be used to enable accurate dynamic voltage and frequency scaling.","PeriodicalId":194982,"journal":{"name":"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Work-in-Progress: DeVos: A Learning-based Delay Model of Voltage-Scaled Circuits\",\"authors\":\"Dongning Ma, Siyu Shen, Xun Jiao\",\"doi\":\"10.1145/3349567.3351725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic voltage and frequency scaling (DVFS) is a typical method to reduce energy consumption of circuits. However, it may cause timing errors if the frequency is not set properly under scaled voltages. To alleviate this issue, this paper proposes DeVos, a supervised learning model that can predict dynamic delay of voltage-scaled circuits based on their input workload. We measure the dynamic delay using switching activity generated through gate-level simulation of a post place-and-route design in TSMC 45nm process. We then look for features in the input data that influence dynamic path sensitization. Using these features we apply random forest to construct a predictive model trained and tested using random data. Across a wide range of voltage levels, DeVos achieves on average a mean absolute percentage error (MAPE) of less than 5%. To our best knowledge, DeVos is the first dynamic delay model of voltage-scaled circuits and can be used to enable accurate dynamic voltage and frequency scaling.\",\"PeriodicalId\":194982,\"journal\":{\"name\":\"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3349567.3351725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349567.3351725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

动态电压频率缩放(DVFS)是降低电路能耗的一种典型方法。但是,如果在比例电压下频率设置不正确,可能会导致定时错误。为了缓解这一问题,本文提出了一种监督学习模型DeVos,它可以根据输入负载预测电压缩放电路的动态延迟。我们通过对台积电45nm工艺的后置和路由设计的门级模拟产生的开关活动来测量动态延迟。然后,我们在输入数据中寻找影响动态路径敏化的特征。利用这些特征,我们应用随机森林构建了一个使用随机数据训练和测试的预测模型。在广泛的电压水平范围内,DeVos的平均绝对百分比误差(MAPE)小于5%。据我们所知,DeVos是电压缩放电路的第一个动态延迟模型,可用于实现精确的动态电压和频率缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Work-in-Progress: DeVos: A Learning-based Delay Model of Voltage-Scaled Circuits
Dynamic voltage and frequency scaling (DVFS) is a typical method to reduce energy consumption of circuits. However, it may cause timing errors if the frequency is not set properly under scaled voltages. To alleviate this issue, this paper proposes DeVos, a supervised learning model that can predict dynamic delay of voltage-scaled circuits based on their input workload. We measure the dynamic delay using switching activity generated through gate-level simulation of a post place-and-route design in TSMC 45nm process. We then look for features in the input data that influence dynamic path sensitization. Using these features we apply random forest to construct a predictive model trained and tested using random data. Across a wide range of voltage levels, DeVos achieves on average a mean absolute percentage error (MAPE) of less than 5%. To our best knowledge, DeVos is the first dynamic delay model of voltage-scaled circuits and can be used to enable accurate dynamic voltage and frequency scaling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信