主成分分析在对比超声中的自动血池识别

S. Saporito, Ingeborg H. F. Herold, P. Houthuizen, H. Korsten, H. C. Assen, M. Mischi
{"title":"主成分分析在对比超声中的自动血池识别","authors":"S. Saporito, Ingeborg H. F. Herold, P. Houthuizen, H. Korsten, H. C. Assen, M. Mischi","doi":"10.1109/ISBI.2014.6868083","DOIUrl":null,"url":null,"abstract":"Several cardiovascular parameters of clinical interest can be assessed by indicator dilution techniques. Ultrasound contrast agents have been proposed as non-invasive indicator, showing promising results for blood volume estimation. However, the definition of an optimal region of interest for quantification of the indicator remains a critical step in the procedure, usually performed manually. In this work we present an automatic method to extract indicator dilution curves. Dimensionality reduction is achieved by principal component analysis followed by clustering to identify the different regions of interest. The method is evaluated on in vitro and in vivo datasets, compared to manually defined regions. The average difference was -3.47% ± 3.58% for in vitro volume estimates and the error was 1.29% ± 2.54% for trans-pulmonary mean transit time estimation. The new method allows kinetic parameter estimates in close agreement with those obtained manually; therefore it is a promising alternative for indicator dilution curve extraction.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic blood pool identification in contrast ultrasound using principal component analysis\",\"authors\":\"S. Saporito, Ingeborg H. F. Herold, P. Houthuizen, H. Korsten, H. C. Assen, M. Mischi\",\"doi\":\"10.1109/ISBI.2014.6868083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several cardiovascular parameters of clinical interest can be assessed by indicator dilution techniques. Ultrasound contrast agents have been proposed as non-invasive indicator, showing promising results for blood volume estimation. However, the definition of an optimal region of interest for quantification of the indicator remains a critical step in the procedure, usually performed manually. In this work we present an automatic method to extract indicator dilution curves. Dimensionality reduction is achieved by principal component analysis followed by clustering to identify the different regions of interest. The method is evaluated on in vitro and in vivo datasets, compared to manually defined regions. The average difference was -3.47% ± 3.58% for in vitro volume estimates and the error was 1.29% ± 2.54% for trans-pulmonary mean transit time estimation. The new method allows kinetic parameter estimates in close agreement with those obtained manually; therefore it is a promising alternative for indicator dilution curve extraction.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6868083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一些具有临床意义的心血管参数可以通过指标稀释技术进行评估。超声造影剂已被提出作为一种无创指标,在估计血容量方面显示出良好的结果。然而,对指标量化的最佳兴趣区域的定义仍然是该程序中的关键步骤,通常是手动执行的。在这项工作中,我们提出了一种自动提取指标稀释曲线的方法。降维是通过主成分分析和聚类来识别不同的感兴趣区域来实现的。与手动定义的区域相比,该方法在体外和体内数据集上进行了评估。体外体积估计值的平均误差为-3.47%±3.58%,经肺平均运输时间估计值的误差为1.29%±2.54%。新方法使动力学参数的估计与人工获得的结果非常接近;因此,它是指示剂稀释曲线提取的一种很有前途的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic blood pool identification in contrast ultrasound using principal component analysis
Several cardiovascular parameters of clinical interest can be assessed by indicator dilution techniques. Ultrasound contrast agents have been proposed as non-invasive indicator, showing promising results for blood volume estimation. However, the definition of an optimal region of interest for quantification of the indicator remains a critical step in the procedure, usually performed manually. In this work we present an automatic method to extract indicator dilution curves. Dimensionality reduction is achieved by principal component analysis followed by clustering to identify the different regions of interest. The method is evaluated on in vitro and in vivo datasets, compared to manually defined regions. The average difference was -3.47% ± 3.58% for in vitro volume estimates and the error was 1.29% ± 2.54% for trans-pulmonary mean transit time estimation. The new method allows kinetic parameter estimates in close agreement with those obtained manually; therefore it is a promising alternative for indicator dilution curve extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信