基于液晶的空间可调谐空心波导器件

M. Jost, C. Weickhmann, T. Franke, A. Prasetiadi, W. Hu, M. Nickel, O. Karabey, R. Jakoby
{"title":"基于液晶的空间可调谐空心波导器件","authors":"M. Jost, C. Weickhmann, T. Franke, A. Prasetiadi, W. Hu, M. Nickel, O. Karabey, R. Jakoby","doi":"10.1109/IMOC.2015.7369046","DOIUrl":null,"url":null,"abstract":"This paper presents an overview in the field of passive, continuously tuneable liquid crystal (LC) devices in hollow waveguide topology. In particular, the designs and measurements of a Ka-band phase shifter as well as a K-band band-pass filter based on an LC filled waveguide resonator are shown. Both demonstrators are designated to be space qualified as their field of application is in satellite communications. While the high performance phase shifter will be integrated in a phased array antenna for beam scanning purposes, the high quality (Q) factor band-pass filter will be used to change the operating frequency and band allocation of a satellite.The key feature of the LC based hollow waveguide phase shifter is its high efhciency, dehned by the maximum differential phase shift divided by the maximum insertion loss in all tuning states, which is measured in the design frequency range of 23 GHz to 27 GHz to more than 130°/dB by means of electric biasing. The key feature of the band-pass hlter is its high Q-factor of up to 484, resulting in a comparatively small bandwidth compared to common hlters based on planar topologies. For the presented hlter, a relative bandwidth of 1% is measured at 20 GHz.","PeriodicalId":431462,"journal":{"name":"2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Tuneable hollow waveguide devices for space applications based on liquid crystal\",\"authors\":\"M. Jost, C. Weickhmann, T. Franke, A. Prasetiadi, W. Hu, M. Nickel, O. Karabey, R. Jakoby\",\"doi\":\"10.1109/IMOC.2015.7369046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an overview in the field of passive, continuously tuneable liquid crystal (LC) devices in hollow waveguide topology. In particular, the designs and measurements of a Ka-band phase shifter as well as a K-band band-pass filter based on an LC filled waveguide resonator are shown. Both demonstrators are designated to be space qualified as their field of application is in satellite communications. While the high performance phase shifter will be integrated in a phased array antenna for beam scanning purposes, the high quality (Q) factor band-pass filter will be used to change the operating frequency and band allocation of a satellite.The key feature of the LC based hollow waveguide phase shifter is its high efhciency, dehned by the maximum differential phase shift divided by the maximum insertion loss in all tuning states, which is measured in the design frequency range of 23 GHz to 27 GHz to more than 130°/dB by means of electric biasing. The key feature of the band-pass hlter is its high Q-factor of up to 484, resulting in a comparatively small bandwidth compared to common hlters based on planar topologies. For the presented hlter, a relative bandwidth of 1% is measured at 20 GHz.\",\"PeriodicalId\":431462,\"journal\":{\"name\":\"2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMOC.2015.7369046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMOC.2015.7369046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文综述了空心波导结构无源连续可调谐液晶器件的研究进展。特别地,给出了基于LC填充波导谐振器的ka波段移相器和k波段带通滤波器的设计和测量。这两种演示装置都被指定为具有空间资格,因为它们的应用领域是卫星通信。虽然高性能移相器将集成在相控阵天线中用于波束扫描,但高质量(Q)因子带通滤波器将用于改变卫星的工作频率和频带分配。基于LC的空心波导移相器的主要特点是它的高效率,通过在所有调谐状态下的最大差分相移除以最大插入损耗来提高效率,在23 GHz至27 GHz的设计频率范围内通过电偏置测量到130°/dB以上。该带通通信器的主要特点是其高达484的高q因子,与基于平面拓扑结构的普通通信器相比,带宽相对较小。在20 GHz处测量到的相对带宽为1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuneable hollow waveguide devices for space applications based on liquid crystal
This paper presents an overview in the field of passive, continuously tuneable liquid crystal (LC) devices in hollow waveguide topology. In particular, the designs and measurements of a Ka-band phase shifter as well as a K-band band-pass filter based on an LC filled waveguide resonator are shown. Both demonstrators are designated to be space qualified as their field of application is in satellite communications. While the high performance phase shifter will be integrated in a phased array antenna for beam scanning purposes, the high quality (Q) factor band-pass filter will be used to change the operating frequency and band allocation of a satellite.The key feature of the LC based hollow waveguide phase shifter is its high efhciency, dehned by the maximum differential phase shift divided by the maximum insertion loss in all tuning states, which is measured in the design frequency range of 23 GHz to 27 GHz to more than 130°/dB by means of electric biasing. The key feature of the band-pass hlter is its high Q-factor of up to 484, resulting in a comparatively small bandwidth compared to common hlters based on planar topologies. For the presented hlter, a relative bandwidth of 1% is measured at 20 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信