{"title":"依赖链接嵌入:语法子结构的连续表示","authors":"Mohit Bansal","doi":"10.3115/v1/W15-1514","DOIUrl":null,"url":null,"abstract":"We present a simple method to learn continuous representations of dependency substructures (links), with the motivation of directly working with higher-order, structured embeddings and their hidden relationships, and also to avoid the millions of sparse, template-based word-cluster features in dependency parsing. These link embeddings allow a significantly smaller and simpler set of unary features for dependency parsing, while maintaining improvements similar to state-of-the-art, n-ary word-cluster features, and also stacking over them. Moreover, these link vectors (made publicly available) are directly portable as offthe-shelf, dense, syntactic features in various NLP tasks. As one example, we incorporate them into constituent parse reranking, where their small feature set again matches the performance of standard non-local, manuallydefined features, and also stacks over them.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Dependency Link Embeddings: Continuous Representations of Syntactic Substructures\",\"authors\":\"Mohit Bansal\",\"doi\":\"10.3115/v1/W15-1514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a simple method to learn continuous representations of dependency substructures (links), with the motivation of directly working with higher-order, structured embeddings and their hidden relationships, and also to avoid the millions of sparse, template-based word-cluster features in dependency parsing. These link embeddings allow a significantly smaller and simpler set of unary features for dependency parsing, while maintaining improvements similar to state-of-the-art, n-ary word-cluster features, and also stacking over them. Moreover, these link vectors (made publicly available) are directly portable as offthe-shelf, dense, syntactic features in various NLP tasks. As one example, we incorporate them into constituent parse reranking, where their small feature set again matches the performance of standard non-local, manuallydefined features, and also stacks over them.\",\"PeriodicalId\":299646,\"journal\":{\"name\":\"VS@HLT-NAACL\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VS@HLT-NAACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/v1/W15-1514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dependency Link Embeddings: Continuous Representations of Syntactic Substructures
We present a simple method to learn continuous representations of dependency substructures (links), with the motivation of directly working with higher-order, structured embeddings and their hidden relationships, and also to avoid the millions of sparse, template-based word-cluster features in dependency parsing. These link embeddings allow a significantly smaller and simpler set of unary features for dependency parsing, while maintaining improvements similar to state-of-the-art, n-ary word-cluster features, and also stacking over them. Moreover, these link vectors (made publicly available) are directly portable as offthe-shelf, dense, syntactic features in various NLP tasks. As one example, we incorporate them into constituent parse reranking, where their small feature set again matches the performance of standard non-local, manuallydefined features, and also stacks over them.