随钻测井变送器数据驱动故障检测

Karolina Sobczak-Oramus, A. Mosallam, Caner Basci, Jinlong Kang
{"title":"随钻测井变送器数据驱动故障检测","authors":"Karolina Sobczak-Oramus, A. Mosallam, Caner Basci, Jinlong Kang","doi":"10.36001/phme.2022.v7i1.3362","DOIUrl":null,"url":null,"abstract":"Logging tools widely used in the oil and gas industry are exposed to demanding environmental conditions that can lead to faster degradation and unexpected failures. These events can reduce productivity, delay deliverables, or even bring entire drilling operations to an end. However, such accidents can be avoided using a prognostics and health management  approach. This paper presents a data-driven fault detection method for transmitter in logging-while-drilling tool adopting a support vector machine classifier. The health analyzer determines the component’s physical condition in just a few minutes, demonstrating an exceptional value for both field and maintenance engineers. This work is part of a long-term project aimed at constructing a digital fleet management system for downhole testing tools.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data-Driven Fault Detection for Transmitter in Logging-While-Drilling Tool\",\"authors\":\"Karolina Sobczak-Oramus, A. Mosallam, Caner Basci, Jinlong Kang\",\"doi\":\"10.36001/phme.2022.v7i1.3362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logging tools widely used in the oil and gas industry are exposed to demanding environmental conditions that can lead to faster degradation and unexpected failures. These events can reduce productivity, delay deliverables, or even bring entire drilling operations to an end. However, such accidents can be avoided using a prognostics and health management  approach. This paper presents a data-driven fault detection method for transmitter in logging-while-drilling tool adopting a support vector machine classifier. The health analyzer determines the component’s physical condition in just a few minutes, demonstrating an exceptional value for both field and maintenance engineers. This work is part of a long-term project aimed at constructing a digital fleet management system for downhole testing tools.\",\"PeriodicalId\":422825,\"journal\":{\"name\":\"PHM Society European Conference\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHM Society European Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/phme.2022.v7i1.3362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

油气行业中广泛使用的测井工具暴露在苛刻的环境条件下,可能导致更快的退化和意外故障。这些事件可能会降低产能,延迟交付,甚至导致整个钻井作业的结束。然而,使用预测和健康管理方法可以避免此类事故。提出了一种采用支持向量机分类器的随钻测井变送器数据驱动故障检测方法。运行状况分析仪可在短短几分钟内确定组件的物理状况,为现场和维护工程师展示了非凡的价值。这项工作是长期项目的一部分,旨在为井下测试工具构建数字化车队管理系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Fault Detection for Transmitter in Logging-While-Drilling Tool
Logging tools widely used in the oil and gas industry are exposed to demanding environmental conditions that can lead to faster degradation and unexpected failures. These events can reduce productivity, delay deliverables, or even bring entire drilling operations to an end. However, such accidents can be avoided using a prognostics and health management  approach. This paper presents a data-driven fault detection method for transmitter in logging-while-drilling tool adopting a support vector machine classifier. The health analyzer determines the component’s physical condition in just a few minutes, demonstrating an exceptional value for both field and maintenance engineers. This work is part of a long-term project aimed at constructing a digital fleet management system for downhole testing tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信