基于MSER的高分辨率遥感图像阴影检测

Hai-Yan Yu, Jun-Ge Sun, Lining Liu, Yun-Hong Wang, Yi-Ding Wang
{"title":"基于MSER的高分辨率遥感图像阴影检测","authors":"Hai-Yan Yu, Jun-Ge Sun, Lining Liu, Yun-Hong Wang, Yi-Ding Wang","doi":"10.1109/ICMLC.2010.5580577","DOIUrl":null,"url":null,"abstract":"The shadows are regarded as obstacles in remote sensing image analysis. With high-resolution remote sensing images developed, especially in urban area, shadow detection plays a much more important role in many applications. This paper presents a novel vision-based shadow detection method. The shadow areas are usually much darker than non-shadow areas visually in high resolution images. In our method, we extracted MSER (Maximally Stable Extremal Regions) in the image. Then these regions are classified into shadow-areas and non-shadow areas. Our method is experimentally verified by applying it to Quickbird images. The experimental result shows that it can effectively extract shadow areas in high resolution remote sensing images.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"MSER based shadow detection in high resolution remote sensing image\",\"authors\":\"Hai-Yan Yu, Jun-Ge Sun, Lining Liu, Yun-Hong Wang, Yi-Ding Wang\",\"doi\":\"10.1109/ICMLC.2010.5580577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The shadows are regarded as obstacles in remote sensing image analysis. With high-resolution remote sensing images developed, especially in urban area, shadow detection plays a much more important role in many applications. This paper presents a novel vision-based shadow detection method. The shadow areas are usually much darker than non-shadow areas visually in high resolution images. In our method, we extracted MSER (Maximally Stable Extremal Regions) in the image. Then these regions are classified into shadow-areas and non-shadow areas. Our method is experimentally verified by applying it to Quickbird images. The experimental result shows that it can effectively extract shadow areas in high resolution remote sensing images.\",\"PeriodicalId\":126080,\"journal\":{\"name\":\"2010 International Conference on Machine Learning and Cybernetics\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.5580577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

在遥感图像分析中,阴影被认为是一个障碍。随着高分辨率遥感图像的发展,特别是在城市地区,阴影检测在许多应用中发挥着越来越重要的作用。提出了一种新的基于视觉的阴影检测方法。在高分辨率图像中,阴影区域通常比非阴影区域要暗得多。在我们的方法中,我们提取图像中的最大稳定极值区域(MSER)。然后将这些区域分为阴影区域和非阴影区域。通过对Quickbird图像的实验验证了该方法的有效性。实验结果表明,该方法可以有效地提取高分辨率遥感图像中的阴影区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MSER based shadow detection in high resolution remote sensing image
The shadows are regarded as obstacles in remote sensing image analysis. With high-resolution remote sensing images developed, especially in urban area, shadow detection plays a much more important role in many applications. This paper presents a novel vision-based shadow detection method. The shadow areas are usually much darker than non-shadow areas visually in high resolution images. In our method, we extracted MSER (Maximally Stable Extremal Regions) in the image. Then these regions are classified into shadow-areas and non-shadow areas. Our method is experimentally verified by applying it to Quickbird images. The experimental result shows that it can effectively extract shadow areas in high resolution remote sensing images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信