回顾最先进的深度学习框架的推理性能

Berk Ulker, S. Stuijk, H. Corporaal, R. Wijnhoven
{"title":"回顾最先进的深度学习框架的推理性能","authors":"Berk Ulker, S. Stuijk, H. Corporaal, R. Wijnhoven","doi":"10.1145/3378678.3391882","DOIUrl":null,"url":null,"abstract":"Deep learning models have replaced conventional methods for machine learning tasks. Efficient inference on edge devices with limited resources is key for broader deployment. In this work, we focus on the tool selection challenge for inference deployment. We present an extensive evaluation of the inference performance of deep learning software tools using state-of-the-art CNN architectures for multiple hardware platforms. We benchmark these hardware-software pairs for a broad range of network architectures, inference batch sizes, and floating-point precision, focusing on latency and throughput. Our results reveal interesting combinations for optimal tool selection, resulting in different optima when considering minimum latency and maximum throughput.","PeriodicalId":383191,"journal":{"name":"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Reviewing inference performance of state-of-the-art deep learning frameworks\",\"authors\":\"Berk Ulker, S. Stuijk, H. Corporaal, R. Wijnhoven\",\"doi\":\"10.1145/3378678.3391882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models have replaced conventional methods for machine learning tasks. Efficient inference on edge devices with limited resources is key for broader deployment. In this work, we focus on the tool selection challenge for inference deployment. We present an extensive evaluation of the inference performance of deep learning software tools using state-of-the-art CNN architectures for multiple hardware platforms. We benchmark these hardware-software pairs for a broad range of network architectures, inference batch sizes, and floating-point precision, focusing on latency and throughput. Our results reveal interesting combinations for optimal tool selection, resulting in different optima when considering minimum latency and maximum throughput.\",\"PeriodicalId\":383191,\"journal\":{\"name\":\"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3378678.3391882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378678.3391882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

深度学习模型已经取代了机器学习任务的传统方法。在资源有限的边缘设备上进行有效的推理是更广泛部署的关键。在这项工作中,我们关注推理部署的工具选择挑战。我们在多个硬件平台上使用最先进的CNN架构,对深度学习软件工具的推理性能进行了广泛的评估。我们针对广泛的网络架构、推理批处理大小和浮点精度对这些硬件软件对进行基准测试,重点关注延迟和吞吐量。我们的结果揭示了最优工具选择的有趣组合,在考虑最小延迟和最大吞吐量时产生不同的最优选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reviewing inference performance of state-of-the-art deep learning frameworks
Deep learning models have replaced conventional methods for machine learning tasks. Efficient inference on edge devices with limited resources is key for broader deployment. In this work, we focus on the tool selection challenge for inference deployment. We present an extensive evaluation of the inference performance of deep learning software tools using state-of-the-art CNN architectures for multiple hardware platforms. We benchmark these hardware-software pairs for a broad range of network architectures, inference batch sizes, and floating-point precision, focusing on latency and throughput. Our results reveal interesting combinations for optimal tool selection, resulting in different optima when considering minimum latency and maximum throughput.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信