基于点云的有限元分析深度学习模型

Meduri Venkata Shivaditya, Francesca Bugiotti, F. Magoulès
{"title":"基于点云的有限元分析深度学习模型","authors":"Meduri Venkata Shivaditya, Francesca Bugiotti, F. Magoulès","doi":"10.1109/DCABES57229.2022.00049","DOIUrl":null,"url":null,"abstract":"In this paper, we explore point-cloud based deep learning models to analyze numerical simulations arising from finite element analysis. The objective is to classify automatically the results of the simulations without tedious human intervention. Two models are here presented: the Point-Net classification model and the Dynamic Graph Convolutional Neural Net model. Both trained point-cloud deep learning models performed well on experiments with finite element analysis arising from automotive industry. The proposed models show promise in automatizing the analysis process of finite element simulations. An accuracy of 79.17% and 94.5% is obtained for the Point-Net and the Dynamic Graph Convolutional Neural Net model respectively.","PeriodicalId":344365,"journal":{"name":"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Point-Cloud-based Deep Learning Models for Finite Element Analysis\",\"authors\":\"Meduri Venkata Shivaditya, Francesca Bugiotti, F. Magoulès\",\"doi\":\"10.1109/DCABES57229.2022.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we explore point-cloud based deep learning models to analyze numerical simulations arising from finite element analysis. The objective is to classify automatically the results of the simulations without tedious human intervention. Two models are here presented: the Point-Net classification model and the Dynamic Graph Convolutional Neural Net model. Both trained point-cloud deep learning models performed well on experiments with finite element analysis arising from automotive industry. The proposed models show promise in automatizing the analysis process of finite element simulations. An accuracy of 79.17% and 94.5% is obtained for the Point-Net and the Dynamic Graph Convolutional Neural Net model respectively.\",\"PeriodicalId\":344365,\"journal\":{\"name\":\"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCABES57229.2022.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES57229.2022.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探索基于点云的深度学习模型来分析由有限元分析产生的数值模拟。目标是在没有繁琐的人工干预的情况下对模拟结果进行自动分类。本文提出了两种模型:点网分类模型和动态图卷积神经网络模型。经过训练的点云深度学习模型在汽车行业的有限元分析实验中表现良好。所提出的模型在有限元仿真分析过程的自动化方面显示出良好的前景。Point-Net和Dynamic Graph Convolutional Neural Net模型的准确率分别为79.17%和94.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Point-Cloud-based Deep Learning Models for Finite Element Analysis
In this paper, we explore point-cloud based deep learning models to analyze numerical simulations arising from finite element analysis. The objective is to classify automatically the results of the simulations without tedious human intervention. Two models are here presented: the Point-Net classification model and the Dynamic Graph Convolutional Neural Net model. Both trained point-cloud deep learning models performed well on experiments with finite element analysis arising from automotive industry. The proposed models show promise in automatizing the analysis process of finite element simulations. An accuracy of 79.17% and 94.5% is obtained for the Point-Net and the Dynamic Graph Convolutional Neural Net model respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信