可容许序数的反射和划分性质

Evangelos Kranakis
{"title":"可容许序数的反射和划分性质","authors":"Evangelos Kranakis","doi":"10.1016/0003-4843(82)90022-5","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper studies the relation between admissibility, reflection and partition properties. After introducing basic notions in Section e, <em>Σ</em><sub><em>n</em></sub> admissible ordinals are characterized using reflection properties (Section 2). <em>Σ</em><sub><em>n</em></sub> partition relations are introduced in Section 3. In Sections 3 and 4 connections are explored between partition properties, admissibility and projecta. Several more characterizations of admissibility are given in Section 5 (using <em>Σ</em><sub><em>n</em></sub> trees) and Section 6 (using <em>Σ</em><sub><em>n</em></sub> compactness). The ideas developed in Section 5 are used in Section 7 to study the partition relation <span><math><mtext>κ → </mtext><msup><mi></mi><mn><mtext>σ</mtext><msub><mi></mi><mn>n</mn></msub></mn></msup><mtext> (κ)</mtext><msup><mi></mi><mn>2</mn></msup></math></span>.</p></div>","PeriodicalId":100093,"journal":{"name":"Annals of Mathematical Logic","volume":"22 3","pages":"Pages 213-242"},"PeriodicalIF":0.0000,"publicationDate":"1982-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0003-4843(82)90022-5","citationCount":"13","resultStr":"{\"title\":\"Reflection and partition properties of admissible ordinals\",\"authors\":\"Evangelos Kranakis\",\"doi\":\"10.1016/0003-4843(82)90022-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present paper studies the relation between admissibility, reflection and partition properties. After introducing basic notions in Section e, <em>Σ</em><sub><em>n</em></sub> admissible ordinals are characterized using reflection properties (Section 2). <em>Σ</em><sub><em>n</em></sub> partition relations are introduced in Section 3. In Sections 3 and 4 connections are explored between partition properties, admissibility and projecta. Several more characterizations of admissibility are given in Section 5 (using <em>Σ</em><sub><em>n</em></sub> trees) and Section 6 (using <em>Σ</em><sub><em>n</em></sub> compactness). The ideas developed in Section 5 are used in Section 7 to study the partition relation <span><math><mtext>κ → </mtext><msup><mi></mi><mn><mtext>σ</mtext><msub><mi></mi><mn>n</mn></msub></mn></msup><mtext> (κ)</mtext><msup><mi></mi><mn>2</mn></msup></math></span>.</p></div>\",\"PeriodicalId\":100093,\"journal\":{\"name\":\"Annals of Mathematical Logic\",\"volume\":\"22 3\",\"pages\":\"Pages 213-242\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1982-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0003-4843(82)90022-5\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Mathematical Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0003484382900225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematical Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0003484382900225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文研究了可容许性、反射性和分割性之间的关系。在第e节中介绍了基本概念之后,Σn可容许序数用反射性质来表征(第2节)。Σn分区关系在第3节中介绍。在第3节和第4节中,探讨了分区属性、可接受性和项目之间的联系。在第5节(使用Σn树)和第6节(使用Σn紧致性)中给出了更多的可采性特征。第5节中提出的思想在第7节中用于研究划分关系κ→σn (κ)2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reflection and partition properties of admissible ordinals

The present paper studies the relation between admissibility, reflection and partition properties. After introducing basic notions in Section e, Σn admissible ordinals are characterized using reflection properties (Section 2). Σn partition relations are introduced in Section 3. In Sections 3 and 4 connections are explored between partition properties, admissibility and projecta. Several more characterizations of admissibility are given in Section 5 (using Σn trees) and Section 6 (using Σn compactness). The ideas developed in Section 5 are used in Section 7 to study the partition relation κ → σn (κ)2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信