纹理识别用于青蛙识别

MAED '12 Pub Date : 2012-11-02 DOI:10.1145/2390832.2390839
F. Cannavò, G. Nunnari, I. Kale, F. Tek
{"title":"纹理识别用于青蛙识别","authors":"F. Cannavò, G. Nunnari, I. Kale, F. Tek","doi":"10.1145/2390832.2390839","DOIUrl":null,"url":null,"abstract":"This paper describes a visual processing technique for automatic frog (Xenopus Laevis sp.) localization and identification. The problem of frog identification is to process and classify an unknown frog image to determine the identity which is recorded previously on an image database. The frog skin pattern (i.e. texture) provides a unique feature for identification. Hence, the study investigates three different kind of features (i.e. Gabor filters, granulometry, threshold set compactness) to extract texture information. The classifier is built on nearest neighbor principle; it assigns the query feature to the database feature which has the minimum distance. Hence, the study investigates different distance measures and compares their performance. The detailed results show that the most successful feature and distance measure is granulometry and weighted L1 norm for the frog identification using skin texture features.","PeriodicalId":173175,"journal":{"name":"MAED '12","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Texture recognition for frog identification\",\"authors\":\"F. Cannavò, G. Nunnari, I. Kale, F. Tek\",\"doi\":\"10.1145/2390832.2390839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a visual processing technique for automatic frog (Xenopus Laevis sp.) localization and identification. The problem of frog identification is to process and classify an unknown frog image to determine the identity which is recorded previously on an image database. The frog skin pattern (i.e. texture) provides a unique feature for identification. Hence, the study investigates three different kind of features (i.e. Gabor filters, granulometry, threshold set compactness) to extract texture information. The classifier is built on nearest neighbor principle; it assigns the query feature to the database feature which has the minimum distance. Hence, the study investigates different distance measures and compares their performance. The detailed results show that the most successful feature and distance measure is granulometry and weighted L1 norm for the frog identification using skin texture features.\",\"PeriodicalId\":173175,\"journal\":{\"name\":\"MAED '12\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAED '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2390832.2390839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAED '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390832.2390839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种用于自动定位和识别非洲爪蟾(Xenopus Laevis sp.)视觉处理技术。青蛙识别的问题是对事先记录在图像数据库中的未知青蛙图像进行处理和分类,以确定其身份。青蛙的皮肤图案(即纹理)为识别提供了独特的特征。因此,本研究研究了三种不同类型的特征(即Gabor滤波器、粒度测定、阈值设置紧凑度)来提取纹理信息。该分类器基于最近邻原则构建;将查询特征分配给距离最小的数据库特征。因此,本研究调查了不同的距离测量方法,并比较了它们的性能。详细结果表明,在利用皮肤纹理特征识别青蛙时,最成功的特征和距离度量方法是粒度法和加权L1范数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Texture recognition for frog identification
This paper describes a visual processing technique for automatic frog (Xenopus Laevis sp.) localization and identification. The problem of frog identification is to process and classify an unknown frog image to determine the identity which is recorded previously on an image database. The frog skin pattern (i.e. texture) provides a unique feature for identification. Hence, the study investigates three different kind of features (i.e. Gabor filters, granulometry, threshold set compactness) to extract texture information. The classifier is built on nearest neighbor principle; it assigns the query feature to the database feature which has the minimum distance. Hence, the study investigates different distance measures and compares their performance. The detailed results show that the most successful feature and distance measure is granulometry and weighted L1 norm for the frog identification using skin texture features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信