banach空间中抛物型微分方程非齐次柯西问题的解

V. Gorbachuk
{"title":"banach空间中抛物型微分方程非齐次柯西问题的解","authors":"V. Gorbachuk","doi":"10.31861/bmj2022.02.02","DOIUrl":null,"url":null,"abstract":"For a differential equation of the form $u'(t) + Au(t) = f(t), t \\in (0,\\infty)$, where $A$ is the infinitesimal generator of a bounded analytic $C_{0}$-semigroup of linear operators in a Banach space $\\mathfrak{B}, \\ f(t)$ is a $\\mathfrak{B}$-valued polynomial, the behavior in the preassigned points of solutions of the Cauchy problem $u(0) = u_{0} \\in \\mathfrak{B}$ depending on $f(t)$ is investigated.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON SOLUTIONS OF THE NONHOMOGENEOUS CAUCHY PROBLEM FOR PARABOLIC TYPE DIFFERENTIAL EQUATIONS IN A BANACH SPACE\",\"authors\":\"V. Gorbachuk\",\"doi\":\"10.31861/bmj2022.02.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a differential equation of the form $u'(t) + Au(t) = f(t), t \\\\in (0,\\\\infty)$, where $A$ is the infinitesimal generator of a bounded analytic $C_{0}$-semigroup of linear operators in a Banach space $\\\\mathfrak{B}, \\\\ f(t)$ is a $\\\\mathfrak{B}$-valued polynomial, the behavior in the preassigned points of solutions of the Cauchy problem $u(0) = u_{0} \\\\in \\\\mathfrak{B}$ depending on $f(t)$ is investigated.\",\"PeriodicalId\":196726,\"journal\":{\"name\":\"Bukovinian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bukovinian Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31861/bmj2022.02.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2022.02.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于形式为$u'(t) + Au(t) = f(t), t \in (0,\infty)$的微分方程,其中$A$是有界解析的无穷小生成器$C_{0}$ - Banach空间中的线性算子半群$\mathfrak{B}, \ f(t)$是一个$\mathfrak{B}$值多项式,研究了柯西问题$u(0) = u_{0} \in \mathfrak{B}$依赖于$f(t)$的解在预分配点上的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON SOLUTIONS OF THE NONHOMOGENEOUS CAUCHY PROBLEM FOR PARABOLIC TYPE DIFFERENTIAL EQUATIONS IN A BANACH SPACE
For a differential equation of the form $u'(t) + Au(t) = f(t), t \in (0,\infty)$, where $A$ is the infinitesimal generator of a bounded analytic $C_{0}$-semigroup of linear operators in a Banach space $\mathfrak{B}, \ f(t)$ is a $\mathfrak{B}$-valued polynomial, the behavior in the preassigned points of solutions of the Cauchy problem $u(0) = u_{0} \in \mathfrak{B}$ depending on $f(t)$ is investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信