{"title":"广义相对论的起源","authors":"Dong-han Yeom","doi":"10.3938/phit.30.020","DOIUrl":null,"url":null,"abstract":"In this article, we briefly review the motivations behind general relativity. We first discuss the basics of classical physics, including the equations of motion and the field equations. Newtonian mechanics assumes absolute space and time, but this can be philosophically unnatural. Einstein constructed a general theory of classical physics with covariance for the general choice of coordinate systems. This theory is known as general relativity. Finally, we briefly mention how this theory is completed, how this theory is verified, and what can be the future of general relativity.","PeriodicalId":365688,"journal":{"name":"Physics and High Technology","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Beginning of General Relativity\",\"authors\":\"Dong-han Yeom\",\"doi\":\"10.3938/phit.30.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we briefly review the motivations behind general relativity. We first discuss the basics of classical physics, including the equations of motion and the field equations. Newtonian mechanics assumes absolute space and time, but this can be philosophically unnatural. Einstein constructed a general theory of classical physics with covariance for the general choice of coordinate systems. This theory is known as general relativity. Finally, we briefly mention how this theory is completed, how this theory is verified, and what can be the future of general relativity.\",\"PeriodicalId\":365688,\"journal\":{\"name\":\"Physics and High Technology\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and High Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3938/phit.30.020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and High Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3938/phit.30.020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this article, we briefly review the motivations behind general relativity. We first discuss the basics of classical physics, including the equations of motion and the field equations. Newtonian mechanics assumes absolute space and time, but this can be philosophically unnatural. Einstein constructed a general theory of classical physics with covariance for the general choice of coordinate systems. This theory is known as general relativity. Finally, we briefly mention how this theory is completed, how this theory is verified, and what can be the future of general relativity.