强化学习方法在变参数电驱动自适应控制中的应用

T. Pajchrowski, Przemyslaw Siwek, A. Wójcik
{"title":"强化学习方法在变参数电驱动自适应控制中的应用","authors":"T. Pajchrowski, Przemyslaw Siwek, A. Wójcik","doi":"10.1109/PEMC48073.2021.9432592","DOIUrl":null,"url":null,"abstract":"In this work an artificial neural network was used, which learned using Reinforcement Learning algorithm to control a non-stationary object with a complex mechanical structure that depend on the angular position of the shaft. Critic is presented as a function of control error and control cost, which ensures stability of the system in a long-term performance, without the need to disable the adaptation algorithm. Simulation and experimental results are presented.","PeriodicalId":349940,"journal":{"name":"2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of the Reinforcement Learning method for adaptive electric drive control with variable parameters\",\"authors\":\"T. Pajchrowski, Przemyslaw Siwek, A. Wójcik\",\"doi\":\"10.1109/PEMC48073.2021.9432592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work an artificial neural network was used, which learned using Reinforcement Learning algorithm to control a non-stationary object with a complex mechanical structure that depend on the angular position of the shaft. Critic is presented as a function of control error and control cost, which ensures stability of the system in a long-term performance, without the need to disable the adaptation algorithm. Simulation and experimental results are presented.\",\"PeriodicalId\":349940,\"journal\":{\"name\":\"2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEMC48073.2021.9432592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEMC48073.2021.9432592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,使用人工神经网络,它使用强化学习算法来学习控制具有复杂机械结构的非静止物体,该物体依赖于轴的角度位置。在不禁用自适应算法的情况下,以控制误差和控制代价的函数形式提出了临界值,保证了系统长期性能的稳定性。给出了仿真和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the Reinforcement Learning method for adaptive electric drive control with variable parameters
In this work an artificial neural network was used, which learned using Reinforcement Learning algorithm to control a non-stationary object with a complex mechanical structure that depend on the angular position of the shaft. Critic is presented as a function of control error and control cost, which ensures stability of the system in a long-term performance, without the need to disable the adaptation algorithm. Simulation and experimental results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信