一种提高仿真I/O性能的多分辨率数据模型

A. Foulks, R. Bergeron
{"title":"一种提高仿真I/O性能的多分辨率数据模型","authors":"A. Foulks, R. Bergeron","doi":"10.1109/HiPC.2011.6152747","DOIUrl":null,"url":null,"abstract":"Numerical simulations running on very large High Performance Computer clusters still suffer from the I/O bottleneck. The cost of communication can overwhelm the cost of computation, and scales inversely with the number of processors used in the cluster. In previous work we have developed a multiresolution data model to help improve performance for visualizations of very large multi dimensional scientific data sets. In our approach, the data is represented as a multi level hierarchy. Reconstructive error analysis is used to identify regions in the data where the data loss is greatest. We have incorporated this data model into the OpenGGCM solar wind simulation environment. In this paper, we demonstrate that this approach can reduce the I/O and improve the overall performance of a large numerical simulation environment.1","PeriodicalId":122468,"journal":{"name":"2011 18th International Conference on High Performance Computing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiresolution data model for improving simulation I/O performance\",\"authors\":\"A. Foulks, R. Bergeron\",\"doi\":\"10.1109/HiPC.2011.6152747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerical simulations running on very large High Performance Computer clusters still suffer from the I/O bottleneck. The cost of communication can overwhelm the cost of computation, and scales inversely with the number of processors used in the cluster. In previous work we have developed a multiresolution data model to help improve performance for visualizations of very large multi dimensional scientific data sets. In our approach, the data is represented as a multi level hierarchy. Reconstructive error analysis is used to identify regions in the data where the data loss is greatest. We have incorporated this data model into the OpenGGCM solar wind simulation environment. In this paper, we demonstrate that this approach can reduce the I/O and improve the overall performance of a large numerical simulation environment.1\",\"PeriodicalId\":122468,\"journal\":{\"name\":\"2011 18th International Conference on High Performance Computing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 18th International Conference on High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC.2011.6152747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 18th International Conference on High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2011.6152747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在非常大的高性能计算机集群上运行的数值模拟仍然受到I/O瓶颈的影响。通信成本可能超过计算成本,并且与集群中使用的处理器数量成反比。在之前的工作中,我们开发了一个多分辨率数据模型,以帮助提高非常大的多维科学数据集的可视化性能。在我们的方法中,数据被表示为多层层次结构。重建误差分析用于识别数据中数据丢失最大的区域。我们将该数据模型整合到OpenGGCM太阳风模拟环境中。在本文中,我们证明了这种方法可以减少I/O并提高大型数值模拟环境的整体性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multiresolution data model for improving simulation I/O performance
Numerical simulations running on very large High Performance Computer clusters still suffer from the I/O bottleneck. The cost of communication can overwhelm the cost of computation, and scales inversely with the number of processors used in the cluster. In previous work we have developed a multiresolution data model to help improve performance for visualizations of very large multi dimensional scientific data sets. In our approach, the data is represented as a multi level hierarchy. Reconstructive error analysis is used to identify regions in the data where the data loss is greatest. We have incorporated this data model into the OpenGGCM solar wind simulation environment. In this paper, we demonstrate that this approach can reduce the I/O and improve the overall performance of a large numerical simulation environment.1
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信