可可壳植物化学物质通过调控ERK和PI3K-AKT通路保护线粒体功能并减轻肝细胞氧化应激

M. Rebollo-Hernanz, Y. Aguilera, M. Martín-Cabrejas, E. D. de Mejia
{"title":"可可壳植物化学物质通过调控ERK和PI3K-AKT通路保护线粒体功能并减轻肝细胞氧化应激","authors":"M. Rebollo-Hernanz, Y. Aguilera, M. Martín-Cabrejas, E. D. de Mejia","doi":"10.3390/MSF2021002025","DOIUrl":null,"url":null,"abstract":"This research aimed to assess the impact of an aqueous extract from the cocoa shell and its major phytochemicals on preventing oxidative stress and mitochondrial dysfunction in hepatocytes using an in vitro model of nonalcoholic fatty liver disease (NAFLD). The phytochemicals from cocoa shell were extracted using water and characterized by UPLC-MS/MS analysis. HepG2 cells were cotreated with either the aqueous extract from cocoa shell (CAE, 20–100 µg mL−1) or 10–50 µmol L−1 of pure theobromine, protocatechuic acid, procyanidin B2, epicatechin, and catechin in the presence or absence of palmitic acid (PA, 500 µmol L−1) to mimic NAFLD conditions in vitro. Biomarkers of mitochondrial function and oxidative stress were evaluated 24 h after the cotreatment in cell supernatants and lysates using chemical, biochemical, and immunochemical techniques. CAE and the phytochemicals therein significantly (p < 0.05) protected mitochondrial content (15–100%) and preserved mitochondrial function, promoting O2 consumption (1.2- to 1.8-fold) and ATP production (1.3- to 2.1-fold). Phytochemicals from cocoa shell significantly (p < 0.05) decreased PA-triggered oxidative stress. The mitochondrial membrane potential was maintained (62–100%), and the production of mitochondrial superoxide (26–100%) and total ROS (17–100%) was abrogated. CAE significantly (p < 0.05) modulated cell signaling pathways associated with ROS production and mitochondrial dysfunction, including an increase in the phosphorylation of ERK1/2 (2.8-fold), protein kinase B (AKT) (2.8-fold), GSK3 (2.3-fold), Raf-1 (1.9-fold), and mTOR (1.7-fold). In conclusion, results suggested that the cocoa shell’s phytochemicals could protect mitochondrial liver function and alleviate oxidative stress by modulating key pathways involved in their regulation.","PeriodicalId":147460,"journal":{"name":"Medical Sciences Forum","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phytochemicals from Cocoa Shell Protect Mitochondrial Function and Alleviate Oxidative Stress in Hepatocytes via Regulation of ERK and PI3K-AKT Pathways\",\"authors\":\"M. Rebollo-Hernanz, Y. Aguilera, M. Martín-Cabrejas, E. D. de Mejia\",\"doi\":\"10.3390/MSF2021002025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aimed to assess the impact of an aqueous extract from the cocoa shell and its major phytochemicals on preventing oxidative stress and mitochondrial dysfunction in hepatocytes using an in vitro model of nonalcoholic fatty liver disease (NAFLD). The phytochemicals from cocoa shell were extracted using water and characterized by UPLC-MS/MS analysis. HepG2 cells were cotreated with either the aqueous extract from cocoa shell (CAE, 20–100 µg mL−1) or 10–50 µmol L−1 of pure theobromine, protocatechuic acid, procyanidin B2, epicatechin, and catechin in the presence or absence of palmitic acid (PA, 500 µmol L−1) to mimic NAFLD conditions in vitro. Biomarkers of mitochondrial function and oxidative stress were evaluated 24 h after the cotreatment in cell supernatants and lysates using chemical, biochemical, and immunochemical techniques. CAE and the phytochemicals therein significantly (p < 0.05) protected mitochondrial content (15–100%) and preserved mitochondrial function, promoting O2 consumption (1.2- to 1.8-fold) and ATP production (1.3- to 2.1-fold). Phytochemicals from cocoa shell significantly (p < 0.05) decreased PA-triggered oxidative stress. The mitochondrial membrane potential was maintained (62–100%), and the production of mitochondrial superoxide (26–100%) and total ROS (17–100%) was abrogated. CAE significantly (p < 0.05) modulated cell signaling pathways associated with ROS production and mitochondrial dysfunction, including an increase in the phosphorylation of ERK1/2 (2.8-fold), protein kinase B (AKT) (2.8-fold), GSK3 (2.3-fold), Raf-1 (1.9-fold), and mTOR (1.7-fold). In conclusion, results suggested that the cocoa shell’s phytochemicals could protect mitochondrial liver function and alleviate oxidative stress by modulating key pathways involved in their regulation.\",\"PeriodicalId\":147460,\"journal\":{\"name\":\"Medical Sciences Forum\",\"volume\":\"194 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Sciences Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/MSF2021002025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Sciences Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/MSF2021002025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过非酒精性脂肪性肝病(NAFLD)体外模型,评估可可壳水提取物及其主要植物化学物质对预防肝细胞氧化应激和线粒体功能障碍的影响。用水提取可可壳中的植物化学物质,并用UPLC-MS/MS分析对其进行表征。HepG2细胞分别用可可壳水提取物(CAE, 20-100µg mL−1)或10-50µmol L−1纯可可碱、原儿茶酸、原花青素B2、表儿茶素和儿茶素在棕榈酸(PA, 500µmol L−1)存在或不存在的情况下共处理,以模拟体外NAFLD条件。在细胞上清液和裂解物共处理24小时后,使用化学、生化和免疫化学技术评估线粒体功能和氧化应激的生物标志物。CAE和其中的植物化学物质显著(p < 0.05)保护线粒体含量(15-100%)和线粒体功能,促进O2消耗(1.2- 1.8倍)和ATP产生(1.3- 2.1倍)。可可壳植物化学物质显著降低pa引发的氧化应激(p < 0.05)。维持线粒体膜电位(62-100%),消除线粒体超氧化物(26-100%)和总ROS(17-100%)的产生。CAE显著(p < 0.05)调节与ROS产生和线粒体功能障碍相关的细胞信号通路,包括ERK1/2(2.8倍)、蛋白激酶B (AKT)(2.8倍)、GSK3(2.3倍)、Raf-1(1.9倍)和mTOR(1.7倍)磷酸化的增加。综上所述,可可壳中的植物化学物质可以通过调节线粒体肝脏功能的关键通路来保护线粒体肝脏功能,减轻氧化应激。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phytochemicals from Cocoa Shell Protect Mitochondrial Function and Alleviate Oxidative Stress in Hepatocytes via Regulation of ERK and PI3K-AKT Pathways
This research aimed to assess the impact of an aqueous extract from the cocoa shell and its major phytochemicals on preventing oxidative stress and mitochondrial dysfunction in hepatocytes using an in vitro model of nonalcoholic fatty liver disease (NAFLD). The phytochemicals from cocoa shell were extracted using water and characterized by UPLC-MS/MS analysis. HepG2 cells were cotreated with either the aqueous extract from cocoa shell (CAE, 20–100 µg mL−1) or 10–50 µmol L−1 of pure theobromine, protocatechuic acid, procyanidin B2, epicatechin, and catechin in the presence or absence of palmitic acid (PA, 500 µmol L−1) to mimic NAFLD conditions in vitro. Biomarkers of mitochondrial function and oxidative stress were evaluated 24 h after the cotreatment in cell supernatants and lysates using chemical, biochemical, and immunochemical techniques. CAE and the phytochemicals therein significantly (p < 0.05) protected mitochondrial content (15–100%) and preserved mitochondrial function, promoting O2 consumption (1.2- to 1.8-fold) and ATP production (1.3- to 2.1-fold). Phytochemicals from cocoa shell significantly (p < 0.05) decreased PA-triggered oxidative stress. The mitochondrial membrane potential was maintained (62–100%), and the production of mitochondrial superoxide (26–100%) and total ROS (17–100%) was abrogated. CAE significantly (p < 0.05) modulated cell signaling pathways associated with ROS production and mitochondrial dysfunction, including an increase in the phosphorylation of ERK1/2 (2.8-fold), protein kinase B (AKT) (2.8-fold), GSK3 (2.3-fold), Raf-1 (1.9-fold), and mTOR (1.7-fold). In conclusion, results suggested that the cocoa shell’s phytochemicals could protect mitochondrial liver function and alleviate oxidative stress by modulating key pathways involved in their regulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信