政治言论的意识形态分类

Bei Yu, Stefan Kaufmann, D. Diermeier
{"title":"政治言论的意识形态分类","authors":"Bei Yu, Stefan Kaufmann, D. Diermeier","doi":"10.2139/ssrn.1026925","DOIUrl":null,"url":null,"abstract":"In this paper we discuss the design of ideology classifiers for Congressional speech data. We then examine the ideology classifiers' person-dependency and time-dependency. We found that ideology classifiers trained on 2005 House speeches can be generalized to the Senate speeches of the same year, but not vice versa. The ideology classifiers trained on 2005 House speeches predict recent year Senate speeches better than older speeches, which indicates the classifiers' time-dependency. This dependency may be caused by changes in the issue agenda or the ideological composition of Congress.","PeriodicalId":369795,"journal":{"name":"Writing Technologies eJournal","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ideology Classifiers for Political Speech\",\"authors\":\"Bei Yu, Stefan Kaufmann, D. Diermeier\",\"doi\":\"10.2139/ssrn.1026925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we discuss the design of ideology classifiers for Congressional speech data. We then examine the ideology classifiers' person-dependency and time-dependency. We found that ideology classifiers trained on 2005 House speeches can be generalized to the Senate speeches of the same year, but not vice versa. The ideology classifiers trained on 2005 House speeches predict recent year Senate speeches better than older speeches, which indicates the classifiers' time-dependency. This dependency may be caused by changes in the issue agenda or the ideological composition of Congress.\",\"PeriodicalId\":369795,\"journal\":{\"name\":\"Writing Technologies eJournal\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Writing Technologies eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1026925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Writing Technologies eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1026925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了国会演讲数据的意识形态分类器的设计。然后,我们考察了意识形态分类器的个人依赖性和时间依赖性。我们发现,2005年众议院演讲训练的意识形态分类器可以推广到同年的参议院演讲,反之则不然。对2005年众议院演讲进行训练的意识形态分类器对最近一年参议院演讲的预测优于较早的演讲,这表明分类器具有时间依赖性。这种依赖可能是由议题议程的变化或国会意识形态构成造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ideology Classifiers for Political Speech
In this paper we discuss the design of ideology classifiers for Congressional speech data. We then examine the ideology classifiers' person-dependency and time-dependency. We found that ideology classifiers trained on 2005 House speeches can be generalized to the Senate speeches of the same year, but not vice versa. The ideology classifiers trained on 2005 House speeches predict recent year Senate speeches better than older speeches, which indicates the classifiers' time-dependency. This dependency may be caused by changes in the issue agenda or the ideological composition of Congress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信