{"title":"加权顶点图中的广播","authors":"Hovhannes A. Harutyunyan, Shahin Kamali","doi":"10.1109/ISPA.2008.95","DOIUrl":null,"url":null,"abstract":"In this paper a new model for information dissemination in communication network is presented. The model is defined on networks in which nodes are assigned some weights representing the internal delay they should pass before sending data to their neighbors. The new model, called weighted-vertex model, comes to have real world applications in parallel computation and satellite terrestrial networks. As a generalization of the classical model, optimum broadcasting in weighted-vertex model is NP_Hard. The problem remains NP_Hard in some classes of weighed-vertex graphs. We show existence of approximation algorithms for the broadcasting problem in weighted vertex model, as well as better approximations for specific subclasses of weighted graphs.","PeriodicalId":345341,"journal":{"name":"2008 IEEE International Symposium on Parallel and Distributed Processing with Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Broadcasting in Weighted-Vertex Graphs\",\"authors\":\"Hovhannes A. Harutyunyan, Shahin Kamali\",\"doi\":\"10.1109/ISPA.2008.95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new model for information dissemination in communication network is presented. The model is defined on networks in which nodes are assigned some weights representing the internal delay they should pass before sending data to their neighbors. The new model, called weighted-vertex model, comes to have real world applications in parallel computation and satellite terrestrial networks. As a generalization of the classical model, optimum broadcasting in weighted-vertex model is NP_Hard. The problem remains NP_Hard in some classes of weighed-vertex graphs. We show existence of approximation algorithms for the broadcasting problem in weighted vertex model, as well as better approximations for specific subclasses of weighted graphs.\",\"PeriodicalId\":345341,\"journal\":{\"name\":\"2008 IEEE International Symposium on Parallel and Distributed Processing with Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Parallel and Distributed Processing with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2008.95\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Parallel and Distributed Processing with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2008.95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper a new model for information dissemination in communication network is presented. The model is defined on networks in which nodes are assigned some weights representing the internal delay they should pass before sending data to their neighbors. The new model, called weighted-vertex model, comes to have real world applications in parallel computation and satellite terrestrial networks. As a generalization of the classical model, optimum broadcasting in weighted-vertex model is NP_Hard. The problem remains NP_Hard in some classes of weighed-vertex graphs. We show existence of approximation algorithms for the broadcasting problem in weighted vertex model, as well as better approximations for specific subclasses of weighted graphs.