重力谱序列e1项的研究

D. Tamaki
{"title":"重力谱序列e1项的研究","authors":"D. Tamaki","doi":"10.2140/gtm.2007.10.347","DOIUrl":null,"url":null,"abstract":"The author constructed a spectral sequence strongly converging to h_*(Omega^n Sigma^n X) for any homology theory in [Topology 33 (1994) 631-662]. In this note, we prove that the E^1-term of the spectral sequence is isomorphic to the cobar construction, and hence the spectral sequence is isomorphic to the classical cobar-type Eilenberg-Moore spectral sequence based on the geometric cobar construction from the E^1-term. Similar arguments can be also applied to its variants constructed in [Contemp Math 293 (2002) 299-329].","PeriodicalId":115248,"journal":{"name":"Geometry and Topology Monographs","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the E 1 -term of the gravity spectral sequence\",\"authors\":\"D. Tamaki\",\"doi\":\"10.2140/gtm.2007.10.347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author constructed a spectral sequence strongly converging to h_*(Omega^n Sigma^n X) for any homology theory in [Topology 33 (1994) 631-662]. In this note, we prove that the E^1-term of the spectral sequence is isomorphic to the cobar construction, and hence the spectral sequence is isomorphic to the classical cobar-type Eilenberg-Moore spectral sequence based on the geometric cobar construction from the E^1-term. Similar arguments can be also applied to its variants constructed in [Contemp Math 293 (2002) 299-329].\",\"PeriodicalId\":115248,\"journal\":{\"name\":\"Geometry and Topology Monographs\",\"volume\":\"213 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry and Topology Monographs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gtm.2007.10.347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry and Topology Monographs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gtm.2007.10.347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

作者在[Topology 33(1994) 631-662]中构造了一个强收敛于h_*(Omega^n Sigma^n X)的谱序列。本文从E^1项出发,证明了谱序列的E^1项与cobar构造同构,从而证明了基于几何cobar构造的谱序列与经典cobar型Eilenberg-Moore谱序列同构。类似的论点也可以应用于[当代数学293(2002)299-329]中构造的变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the E 1 -term of the gravity spectral sequence
The author constructed a spectral sequence strongly converging to h_*(Omega^n Sigma^n X) for any homology theory in [Topology 33 (1994) 631-662]. In this note, we prove that the E^1-term of the spectral sequence is isomorphic to the cobar construction, and hence the spectral sequence is isomorphic to the classical cobar-type Eilenberg-Moore spectral sequence based on the geometric cobar construction from the E^1-term. Similar arguments can be also applied to its variants constructed in [Contemp Math 293 (2002) 299-329].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信