{"title":"所以原子","authors":"J. Autschbach","doi":"10.1093/OSO/9780190920807.003.0017","DOIUrl":null,"url":null,"abstract":"This chapter shows how the electronic Schrodinger equation (SE) is solved for a hydrogen-like atom, i.e. an electron moving in the field of a fixed point-like nucleus with charge number Z. The hydrogen atom corresponds to Z = 1. The potential in atomic units is –Z/r, with r being the distance of the electron from the nucleus. The SE is not separable in Cartesian coordinates, but in spherical polar coordinates it separates into a radial equation and an angular momentum equation. The bound states have a total energy of –Z2/(2n2), with n = nr + ℓ being the principal quantum number (q.n.), ℓ = 0,1,2,… the angular momentum q.n., and nr = 1,2,3,… being a radial q.n. Each state for a given ℓ is 2ℓ+1-fold degenerate, with the components labelled by the projection q.n. mℓ. The wavefunctions for mℓ ≠ 0 are complex, but real linear combinations can be formed. This gives the atomic orbitals known from general and organic chemistry. Different ways of visualizing the real wavefunctions are discussed, e.g. as iso-surfaces.","PeriodicalId":207760,"journal":{"name":"Quantum Theory for Chemical Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen-like Atoms\",\"authors\":\"J. Autschbach\",\"doi\":\"10.1093/OSO/9780190920807.003.0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter shows how the electronic Schrodinger equation (SE) is solved for a hydrogen-like atom, i.e. an electron moving in the field of a fixed point-like nucleus with charge number Z. The hydrogen atom corresponds to Z = 1. The potential in atomic units is –Z/r, with r being the distance of the electron from the nucleus. The SE is not separable in Cartesian coordinates, but in spherical polar coordinates it separates into a radial equation and an angular momentum equation. The bound states have a total energy of –Z2/(2n2), with n = nr + ℓ being the principal quantum number (q.n.), ℓ = 0,1,2,… the angular momentum q.n., and nr = 1,2,3,… being a radial q.n. Each state for a given ℓ is 2ℓ+1-fold degenerate, with the components labelled by the projection q.n. mℓ. The wavefunctions for mℓ ≠ 0 are complex, but real linear combinations can be formed. This gives the atomic orbitals known from general and organic chemistry. Different ways of visualizing the real wavefunctions are discussed, e.g. as iso-surfaces.\",\"PeriodicalId\":207760,\"journal\":{\"name\":\"Quantum Theory for Chemical Applications\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Theory for Chemical Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/OSO/9780190920807.003.0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Theory for Chemical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OSO/9780190920807.003.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本章展示了如何求解类氢原子的电子薛定谔方程(SE),即电子在电荷数为Z的固定点核的场中运动,氢原子对应于Z = 1。电势的原子单位是-Z /r, r是电子到原子核的距离。在笛卡儿坐标系中,SE是不可分离的,但在球极坐标系中,SE可分离为径向方程和角动量方程。束缚态的总能量为-Z2 /(2n2),其中n = nr + r为主量子数(q.n.), r = 0,1,2,…角动量q.n.,而nr = 1,2,3,…为径向q.n.给定的每个态为2r +1倍简并,其分量标记为投影q.n. m。m≠0时的波函数是复杂的,但可以形成实线性组合。这就给出了一般化学和有机化学中已知的原子轨道。讨论了将实际波函数可视化的不同方法,如等面。
This chapter shows how the electronic Schrodinger equation (SE) is solved for a hydrogen-like atom, i.e. an electron moving in the field of a fixed point-like nucleus with charge number Z. The hydrogen atom corresponds to Z = 1. The potential in atomic units is –Z/r, with r being the distance of the electron from the nucleus. The SE is not separable in Cartesian coordinates, but in spherical polar coordinates it separates into a radial equation and an angular momentum equation. The bound states have a total energy of –Z2/(2n2), with n = nr + ℓ being the principal quantum number (q.n.), ℓ = 0,1,2,… the angular momentum q.n., and nr = 1,2,3,… being a radial q.n. Each state for a given ℓ is 2ℓ+1-fold degenerate, with the components labelled by the projection q.n. mℓ. The wavefunctions for mℓ ≠ 0 are complex, but real linear combinations can be formed. This gives the atomic orbitals known from general and organic chemistry. Different ways of visualizing the real wavefunctions are discussed, e.g. as iso-surfaces.