利用激光雷达图像估计单个茎的位置

K. Kimura, Shitaro Goto
{"title":"利用激光雷达图像估计单个茎的位置","authors":"K. Kimura, Shitaro Goto","doi":"10.1109/CCATS.2015.48","DOIUrl":null,"url":null,"abstract":"For REDD+ (Reduction of Emission from Deforestation and forest Degradation) and the Kyoto Protocol, the methodology for a wide range in a short time forest measurement, high-resolution measurement, LiDAR (Lightning Detection and Ranging) will be a powerful tool. In this study, the interpolation method, low-pass filtering, Local Maximum Filter method, and Watershed method were used to estimate the individual stem. Following the comparison of the estimation result of individual stem using LiDAR vs the measured values, the result of accuracy evaluation is 93%.","PeriodicalId":433684,"journal":{"name":"2015 International Conference on Computer Application Technologies","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating the Location of Individual Stem Using LiDAR Imagery\",\"authors\":\"K. Kimura, Shitaro Goto\",\"doi\":\"10.1109/CCATS.2015.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For REDD+ (Reduction of Emission from Deforestation and forest Degradation) and the Kyoto Protocol, the methodology for a wide range in a short time forest measurement, high-resolution measurement, LiDAR (Lightning Detection and Ranging) will be a powerful tool. In this study, the interpolation method, low-pass filtering, Local Maximum Filter method, and Watershed method were used to estimate the individual stem. Following the comparison of the estimation result of individual stem using LiDAR vs the measured values, the result of accuracy evaluation is 93%.\",\"PeriodicalId\":433684,\"journal\":{\"name\":\"2015 International Conference on Computer Application Technologies\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Computer Application Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCATS.2015.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Computer Application Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCATS.2015.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于REDD+(减少毁林和森林退化造成的排放)和京都议定书,在短时间内进行大范围森林测量的方法、高分辨率测量、激光雷达(闪电探测和测距)将是一个强大的工具。在本研究中,采用插值法、低通滤波法、局部最大值滤波法和分水岭法对单个茎进行估计。将激光雷达对单个茎的估计结果与实测值进行比较,精度评价结果为93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the Location of Individual Stem Using LiDAR Imagery
For REDD+ (Reduction of Emission from Deforestation and forest Degradation) and the Kyoto Protocol, the methodology for a wide range in a short time forest measurement, high-resolution measurement, LiDAR (Lightning Detection and Ranging) will be a powerful tool. In this study, the interpolation method, low-pass filtering, Local Maximum Filter method, and Watershed method were used to estimate the individual stem. Following the comparison of the estimation result of individual stem using LiDAR vs the measured values, the result of accuracy evaluation is 93%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信