基于对象级特征的DETR图像分类

Chung-Gi Ban, Dayoung Park, Youngbae Hwang
{"title":"基于对象级特征的DETR图像分类","authors":"Chung-Gi Ban, Dayoung Park, Youngbae Hwang","doi":"10.23919/ICCAS55662.2022.10003912","DOIUrl":null,"url":null,"abstract":"The object in an image is the main information of image representation for image classification. In case that the background in the image is complex or an object size is small, the existing invariant feature, such as Scale Invariant Feature Transform (SIFT) or Speeded Up Robust Features (SURF) is not easy to use for object-level representation. Because SIFT can not distinguish whether the feature includes relevant object information, it may consist of background or less informative features. We use Detection Transformer (DETR), the state of the art object detector to represent the object-level information. By visualizing the attention map of Transformer decoder, we find that each output vector indicates the region of objects effectively. Bag of visual words (BoVW) is applied to represent N output vectors of DETR as the feature of a query image. Based on scene-level and object-level datasets, we compare our method with SIFT based BoVW as an image classification task. We show that the proposed method perform better for object-level dataset than BoVW of SIFT.","PeriodicalId":129856,"journal":{"name":"2022 22nd International Conference on Control, Automation and Systems (ICCAS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image classification using DETR based object-level feature\",\"authors\":\"Chung-Gi Ban, Dayoung Park, Youngbae Hwang\",\"doi\":\"10.23919/ICCAS55662.2022.10003912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object in an image is the main information of image representation for image classification. In case that the background in the image is complex or an object size is small, the existing invariant feature, such as Scale Invariant Feature Transform (SIFT) or Speeded Up Robust Features (SURF) is not easy to use for object-level representation. Because SIFT can not distinguish whether the feature includes relevant object information, it may consist of background or less informative features. We use Detection Transformer (DETR), the state of the art object detector to represent the object-level information. By visualizing the attention map of Transformer decoder, we find that each output vector indicates the region of objects effectively. Bag of visual words (BoVW) is applied to represent N output vectors of DETR as the feature of a query image. Based on scene-level and object-level datasets, we compare our method with SIFT based BoVW as an image classification task. We show that the proposed method perform better for object-level dataset than BoVW of SIFT.\",\"PeriodicalId\":129856,\"journal\":{\"name\":\"2022 22nd International Conference on Control, Automation and Systems (ICCAS)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 22nd International Conference on Control, Automation and Systems (ICCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICCAS55662.2022.10003912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 22nd International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS55662.2022.10003912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在图像分类中,图像中的对象是图像表示的主要信息。当图像背景复杂或对象尺寸较小时,现有的尺度不变特征变换(SIFT)或加速鲁棒特征(SURF)等不变特征难以用于对象级表示。由于SIFT不能区分特征是否包含相关的目标信息,因此它可能由背景特征或信息较少的特征组成。我们使用检测变压器(DETR),最先进的对象检测器来表示对象级信息。通过对Transformer解码器的注意图进行可视化,我们发现每个输出向量都有效地表示了对象的区域。使用视觉词包(BoVW)来表示DETR的N个输出向量作为查询图像的特征。基于场景级和对象级数据集,我们将我们的方法与基于SIFT的BoVW作为图像分类任务进行了比较。结果表明,该方法在对象级数据集上的表现优于SIFT的BoVW方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image classification using DETR based object-level feature
The object in an image is the main information of image representation for image classification. In case that the background in the image is complex or an object size is small, the existing invariant feature, such as Scale Invariant Feature Transform (SIFT) or Speeded Up Robust Features (SURF) is not easy to use for object-level representation. Because SIFT can not distinguish whether the feature includes relevant object information, it may consist of background or less informative features. We use Detection Transformer (DETR), the state of the art object detector to represent the object-level information. By visualizing the attention map of Transformer decoder, we find that each output vector indicates the region of objects effectively. Bag of visual words (BoVW) is applied to represent N output vectors of DETR as the feature of a query image. Based on scene-level and object-level datasets, we compare our method with SIFT based BoVW as an image classification task. We show that the proposed method perform better for object-level dataset than BoVW of SIFT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信