基于直接二叉搜索改进k均值聚类算法的WLSMB半调

He Zi-fen, Z. Zhaolin, Zhang Yinhui
{"title":"基于直接二叉搜索改进k均值聚类算法的WLSMB半调","authors":"He Zi-fen, Z. Zhaolin, Zhang Yinhui","doi":"10.1109/ICMTMA.2013.322","DOIUrl":null,"url":null,"abstract":"This work employs the well known weighted least squares method to optimization to produce halftone images using improved K-means clustering theory. Our algorithm applies to both a printer model and a model for the human visual system (HVS). In this algorithm, the improved K-means clustering method is used to segment an image several regions. In the halftone process, each clustering uses the weighted least-squares model-based(WLSMB) algorithm by use of direct binary search iterative method to obtain halftone image. Analysis and simulation results show that the proposed algorithm produces better gray-scale halftone image quality when we increase the number of clustering with a certain range and outperforms least-squares model-based algorithm in the PSNR (Peak Signal Noise Ratio), WSNR (Weighted Signal Noise Ratio) criteria.","PeriodicalId":169447,"journal":{"name":"2013 Fifth International Conference on Measuring Technology and Mechatronics Automation","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"WLSMB Halftoning Based on Improved K-means Cluster Algorithm Using Direct Binary Search\",\"authors\":\"He Zi-fen, Z. Zhaolin, Zhang Yinhui\",\"doi\":\"10.1109/ICMTMA.2013.322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work employs the well known weighted least squares method to optimization to produce halftone images using improved K-means clustering theory. Our algorithm applies to both a printer model and a model for the human visual system (HVS). In this algorithm, the improved K-means clustering method is used to segment an image several regions. In the halftone process, each clustering uses the weighted least-squares model-based(WLSMB) algorithm by use of direct binary search iterative method to obtain halftone image. Analysis and simulation results show that the proposed algorithm produces better gray-scale halftone image quality when we increase the number of clustering with a certain range and outperforms least-squares model-based algorithm in the PSNR (Peak Signal Noise Ratio), WSNR (Weighted Signal Noise Ratio) criteria.\",\"PeriodicalId\":169447,\"journal\":{\"name\":\"2013 Fifth International Conference on Measuring Technology and Mechatronics Automation\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fifth International Conference on Measuring Technology and Mechatronics Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMTMA.2013.322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Measuring Technology and Mechatronics Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTMA.2013.322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文采用加权最小二乘法,利用改进的k均值聚类理论优化生成半色调图像。我们的算法既适用于打印机模型,也适用于人类视觉系统模型。该算法采用改进的k均值聚类方法对图像进行区域分割。在半色调过程中,每次聚类都采用基于加权最小二乘模型(WLSMB)的算法,采用直接二叉搜索迭代法获得半色调图像。分析和仿真结果表明,当在一定范围内增加聚类次数时,该算法能获得更好的灰度半色调图像质量,并且在峰值信噪比(PSNR)、加权信噪比(WSNR)标准上优于基于最小二乘模型的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WLSMB Halftoning Based on Improved K-means Cluster Algorithm Using Direct Binary Search
This work employs the well known weighted least squares method to optimization to produce halftone images using improved K-means clustering theory. Our algorithm applies to both a printer model and a model for the human visual system (HVS). In this algorithm, the improved K-means clustering method is used to segment an image several regions. In the halftone process, each clustering uses the weighted least-squares model-based(WLSMB) algorithm by use of direct binary search iterative method to obtain halftone image. Analysis and simulation results show that the proposed algorithm produces better gray-scale halftone image quality when we increase the number of clustering with a certain range and outperforms least-squares model-based algorithm in the PSNR (Peak Signal Noise Ratio), WSNR (Weighted Signal Noise Ratio) criteria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信