{"title":"日本历史建筑用砖的电化学脱盐试验","authors":"Risako Fukami, T. Matsui","doi":"10.55708/js0105009","DOIUrl":null,"url":null,"abstract":": Brick buildings and structures are often exposed to outdoor condition, and deterioration of the bricks due to salt weathering caused by the surrounding environment has been reported in various parts of Japan. In Japan, not only the preservation of cultural properties but also their utilization is currently being promoted, and the beauty of brick surfaces is at a stage where it is becoming more important. For these reasons, a simple, low-cost, easily installed desalination model to desalinate only those areas where salt weathering was observed as first aid of deteriorated bricks was created. Powdered cellulose and copper plates were used as electrodes and these materials are readily available and easy to handle for professionals of conservation science as well as non-professionals. The aim of the research presented in this paper was twofold: to investigate the desalination effect of a simple electrochemical desalination model and to obtain knowledge for practical tests by conducting experiments under different energization conditions and observing the surface of the bricks after energization. Na 2 SO 4 solution was used in the experiments and the brick samples containing Na 2 SO 4 were used for desalination test by energizing for 8 days and sample exposure test after energization. When powdered cellulose and copper plates were used as electrodes, it was found that when sufficient water was supplied, approximately 64% of sulfate ions in the brick sample were removed when the energization conditions were 5 V and 0.5 A and 73% of sulfate ions were removed when the energization conditions were 5 V and 1 A. Visual observation confirmed that this removal rate suffices in preventing salt precipitation after energization is applied. This desalination method is expected to be suitable for Japanese historical bricks, which have varied characteristics, because it is possible to adjust the amount of water supplied during the energization by using an easily removable powdered cellulose for the electrode, and desalination can be performed without damaging the brick surface. However, it was found that the black areas consisting mainly of Cu 2 O were formed after the 8-day energization. Since the efficiency of desalination from this area to the anode may be low, this remains a challenge for the future.","PeriodicalId":156864,"journal":{"name":"Journal of Engineering Research and Sciences","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Desalination Test of Bricks as a Building Material for Historical Buildings in Japan\",\"authors\":\"Risako Fukami, T. Matsui\",\"doi\":\"10.55708/js0105009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Brick buildings and structures are often exposed to outdoor condition, and deterioration of the bricks due to salt weathering caused by the surrounding environment has been reported in various parts of Japan. In Japan, not only the preservation of cultural properties but also their utilization is currently being promoted, and the beauty of brick surfaces is at a stage where it is becoming more important. For these reasons, a simple, low-cost, easily installed desalination model to desalinate only those areas where salt weathering was observed as first aid of deteriorated bricks was created. Powdered cellulose and copper plates were used as electrodes and these materials are readily available and easy to handle for professionals of conservation science as well as non-professionals. The aim of the research presented in this paper was twofold: to investigate the desalination effect of a simple electrochemical desalination model and to obtain knowledge for practical tests by conducting experiments under different energization conditions and observing the surface of the bricks after energization. Na 2 SO 4 solution was used in the experiments and the brick samples containing Na 2 SO 4 were used for desalination test by energizing for 8 days and sample exposure test after energization. When powdered cellulose and copper plates were used as electrodes, it was found that when sufficient water was supplied, approximately 64% of sulfate ions in the brick sample were removed when the energization conditions were 5 V and 0.5 A and 73% of sulfate ions were removed when the energization conditions were 5 V and 1 A. Visual observation confirmed that this removal rate suffices in preventing salt precipitation after energization is applied. This desalination method is expected to be suitable for Japanese historical bricks, which have varied characteristics, because it is possible to adjust the amount of water supplied during the energization by using an easily removable powdered cellulose for the electrode, and desalination can be performed without damaging the brick surface. However, it was found that the black areas consisting mainly of Cu 2 O were formed after the 8-day energization. Since the efficiency of desalination from this area to the anode may be low, this remains a challenge for the future.\",\"PeriodicalId\":156864,\"journal\":{\"name\":\"Journal of Engineering Research and Sciences\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Research and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55708/js0105009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55708/js0105009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrochemical Desalination Test of Bricks as a Building Material for Historical Buildings in Japan
: Brick buildings and structures are often exposed to outdoor condition, and deterioration of the bricks due to salt weathering caused by the surrounding environment has been reported in various parts of Japan. In Japan, not only the preservation of cultural properties but also their utilization is currently being promoted, and the beauty of brick surfaces is at a stage where it is becoming more important. For these reasons, a simple, low-cost, easily installed desalination model to desalinate only those areas where salt weathering was observed as first aid of deteriorated bricks was created. Powdered cellulose and copper plates were used as electrodes and these materials are readily available and easy to handle for professionals of conservation science as well as non-professionals. The aim of the research presented in this paper was twofold: to investigate the desalination effect of a simple electrochemical desalination model and to obtain knowledge for practical tests by conducting experiments under different energization conditions and observing the surface of the bricks after energization. Na 2 SO 4 solution was used in the experiments and the brick samples containing Na 2 SO 4 were used for desalination test by energizing for 8 days and sample exposure test after energization. When powdered cellulose and copper plates were used as electrodes, it was found that when sufficient water was supplied, approximately 64% of sulfate ions in the brick sample were removed when the energization conditions were 5 V and 0.5 A and 73% of sulfate ions were removed when the energization conditions were 5 V and 1 A. Visual observation confirmed that this removal rate suffices in preventing salt precipitation after energization is applied. This desalination method is expected to be suitable for Japanese historical bricks, which have varied characteristics, because it is possible to adjust the amount of water supplied during the energization by using an easily removable powdered cellulose for the electrode, and desalination can be performed without damaging the brick surface. However, it was found that the black areas consisting mainly of Cu 2 O were formed after the 8-day energization. Since the efficiency of desalination from this area to the anode may be low, this remains a challenge for the future.