基于组合策略的原始乳房x光片乳腺区域自动提取

C. Feudjio, A. Tiedeu, J. Klein, O. Colot
{"title":"基于组合策略的原始乳房x光片乳腺区域自动提取","authors":"C. Feudjio, A. Tiedeu, J. Klein, O. Colot","doi":"10.1109/SITIS.2017.35","DOIUrl":null,"url":null,"abstract":"Breast region segmentation is a preliminary task in computer-aided-diagnosis (CAD) systems for breast cancer detection. Its accurate extraction improves CAD performances in terms of false positive and computation time. This paper presents a method for automatic breast region extraction in raw mammograms using a two-step strategy. First, a contrast-correction is applied to uniform gray level in breast region then a clustering algorithm is used to assign pixels to their respective class distribution prior to breast region segmentation. The performances of the proposed method tested on images from MIAS database are 95.6%, 96.0% and 99.8% for accuracy, completeness and correctness respectively.","PeriodicalId":153165,"journal":{"name":"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Extraction of Breast Region in Raw Mammograms Using a Combined Strategy\",\"authors\":\"C. Feudjio, A. Tiedeu, J. Klein, O. Colot\",\"doi\":\"10.1109/SITIS.2017.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast region segmentation is a preliminary task in computer-aided-diagnosis (CAD) systems for breast cancer detection. Its accurate extraction improves CAD performances in terms of false positive and computation time. This paper presents a method for automatic breast region extraction in raw mammograms using a two-step strategy. First, a contrast-correction is applied to uniform gray level in breast region then a clustering algorithm is used to assign pixels to their respective class distribution prior to breast region segmentation. The performances of the proposed method tested on images from MIAS database are 95.6%, 96.0% and 99.8% for accuracy, completeness and correctness respectively.\",\"PeriodicalId\":153165,\"journal\":{\"name\":\"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2017.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2017.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

乳房区域分割是计算机辅助诊断(CAD)系统中乳腺癌检测的基础性工作。它的精确提取在误报和计算时间方面提高了CAD的性能。本文提出了一种采用两步策略在原始乳房x光片中自动提取乳房区域的方法。首先对乳房区域的均匀灰度进行对比度校正,然后使用聚类算法将像素分配到各自的类分布,然后进行乳房区域分割。通过对MIAS数据库图像的测试,该方法的准确率、完整性和正确性分别为95.6%、96.0%和99.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Extraction of Breast Region in Raw Mammograms Using a Combined Strategy
Breast region segmentation is a preliminary task in computer-aided-diagnosis (CAD) systems for breast cancer detection. Its accurate extraction improves CAD performances in terms of false positive and computation time. This paper presents a method for automatic breast region extraction in raw mammograms using a two-step strategy. First, a contrast-correction is applied to uniform gray level in breast region then a clustering algorithm is used to assign pixels to their respective class distribution prior to breast region segmentation. The performances of the proposed method tested on images from MIAS database are 95.6%, 96.0% and 99.8% for accuracy, completeness and correctness respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信