Data+Shift:支持数据科学家对数据分布变化进行可视化调查

João Palmeiro, Beatriz Malveiro, Rita Costa, David Polido, Ricardo Moreira, P. Bizarro
{"title":"Data+Shift:支持数据科学家对数据分布变化进行可视化调查","authors":"João Palmeiro, Beatriz Malveiro, Rita Costa, David Polido, Ricardo Moreira, P. Bizarro","doi":"10.48550/arXiv.2204.14025","DOIUrl":null,"url":null,"abstract":"Machine learning on data streams is increasingly more present in multiple domains. However, there is often data distribution shift that can lead machine learning models to make incorrect decisions. While there are automatic methods to detect when drift is happening, human analysis, often by data scientists, is essential to diagnose the causes of the problem and adjust the system. We propose Data+Shift, a visual analytics tool to support data scientists in the task of investigating the underlying factors of shift in data features in the context of fraud detection. Design requirements were derived from interviews with data scientists. Data+Shift is integrated with JupyterLab and can be used alongside other data science tools. We validated our approach with a think-aloud experiment where a data scientist used the tool for a fraud detection use case.","PeriodicalId":224719,"journal":{"name":"Eurographics Conference on Visualization","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Data+Shift: Supporting visual investigation of data distribution shifts by data scientists\",\"authors\":\"João Palmeiro, Beatriz Malveiro, Rita Costa, David Polido, Ricardo Moreira, P. Bizarro\",\"doi\":\"10.48550/arXiv.2204.14025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning on data streams is increasingly more present in multiple domains. However, there is often data distribution shift that can lead machine learning models to make incorrect decisions. While there are automatic methods to detect when drift is happening, human analysis, often by data scientists, is essential to diagnose the causes of the problem and adjust the system. We propose Data+Shift, a visual analytics tool to support data scientists in the task of investigating the underlying factors of shift in data features in the context of fraud detection. Design requirements were derived from interviews with data scientists. Data+Shift is integrated with JupyterLab and can be used alongside other data science tools. We validated our approach with a think-aloud experiment where a data scientist used the tool for a fraud detection use case.\",\"PeriodicalId\":224719,\"journal\":{\"name\":\"Eurographics Conference on Visualization\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Conference on Visualization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.14025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.14025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

数据流上的机器学习越来越多地出现在多个领域。然而,数据分布的变化往往会导致机器学习模型做出错误的决策。虽然有自动检测漂移发生的方法,但人工分析(通常由数据科学家进行)对于诊断问题原因和调整系统至关重要。我们提出Data+Shift,一个可视化分析工具,以支持数据科学家在调查欺诈检测背景下数据特征变化的潜在因素的任务。设计需求来源于对数据科学家的采访。Data+Shift与JupyterLab集成,可以与其他数据科学工具一起使用。我们通过一个有声思考实验验证了我们的方法,在这个实验中,一位数据科学家将该工具用于欺诈检测用例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data+Shift: Supporting visual investigation of data distribution shifts by data scientists
Machine learning on data streams is increasingly more present in multiple domains. However, there is often data distribution shift that can lead machine learning models to make incorrect decisions. While there are automatic methods to detect when drift is happening, human analysis, often by data scientists, is essential to diagnose the causes of the problem and adjust the system. We propose Data+Shift, a visual analytics tool to support data scientists in the task of investigating the underlying factors of shift in data features in the context of fraud detection. Design requirements were derived from interviews with data scientists. Data+Shift is integrated with JupyterLab and can be used alongside other data science tools. We validated our approach with a think-aloud experiment where a data scientist used the tool for a fraud detection use case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信