用噪声感知算法清洗训练数据集

H. Escalante
{"title":"用噪声感知算法清洗训练数据集","authors":"H. Escalante","doi":"10.1109/ENC.2006.7","DOIUrl":null,"url":null,"abstract":"We introduce a novel learning algorithm for noise elimination. Our algorithm is based on the re-measurement idea for the correction of erroneous observations and is able to discriminate between noisy and noiseless observations by using kernel methods. We apply our noise-aware algorithms to several domains including: astronomy, face recognition and ten machine learning benchmark datasets. Experimental results adding noise and useful anomalies to the data show that our algorithm improves data quality, without having to eliminate any observation from the original dataset","PeriodicalId":432491,"journal":{"name":"2006 Seventh Mexican International Conference on Computer Science","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cleaning Training-Datasets with Noise-Aware Algorithms\",\"authors\":\"H. Escalante\",\"doi\":\"10.1109/ENC.2006.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel learning algorithm for noise elimination. Our algorithm is based on the re-measurement idea for the correction of erroneous observations and is able to discriminate between noisy and noiseless observations by using kernel methods. We apply our noise-aware algorithms to several domains including: astronomy, face recognition and ten machine learning benchmark datasets. Experimental results adding noise and useful anomalies to the data show that our algorithm improves data quality, without having to eliminate any observation from the original dataset\",\"PeriodicalId\":432491,\"journal\":{\"name\":\"2006 Seventh Mexican International Conference on Computer Science\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Seventh Mexican International Conference on Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENC.2006.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Seventh Mexican International Conference on Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENC.2006.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的噪声消除学习算法。该算法基于校正错误观测值的重测思想,并采用核方法区分有噪声和无噪声观测值。我们将噪声感知算法应用于多个领域,包括:天文学、人脸识别和10个机器学习基准数据集。实验结果表明,在不消除原始数据集中任何观测值的情况下,该算法提高了数据质量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cleaning Training-Datasets with Noise-Aware Algorithms
We introduce a novel learning algorithm for noise elimination. Our algorithm is based on the re-measurement idea for the correction of erroneous observations and is able to discriminate between noisy and noiseless observations by using kernel methods. We apply our noise-aware algorithms to several domains including: astronomy, face recognition and ten machine learning benchmark datasets. Experimental results adding noise and useful anomalies to the data show that our algorithm improves data quality, without having to eliminate any observation from the original dataset
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信