基于RBF神经网络的推力矢量变换模型

Kenan Yong, Hui Ye, Mou Chen, Qingxian Wu
{"title":"基于RBF神经网络的推力矢量变换模型","authors":"Kenan Yong, Hui Ye, Mou Chen, Qingxian Wu","doi":"10.1109/CHICC.2014.6895788","DOIUrl":null,"url":null,"abstract":"In this paper, a transformation model between the thrust-vectoring vane deflections and the resultant thrust deviation angles is established for the thrust-vectoring with three vane construction based on the radial basis function (RBF) neural network. The RBF neural network is trained using the experiment transformation data from NASA research memorandum via the generalized growing and pruning algorithm (GGAP). The established RBF neural network model can eliminate the inaccuracy of existing estimation model and avoids the modeling difficulties using the experiment data. To test the correctness of the transformation model using RBF neural network, it is compared with the existing estimation model. Through the simulation results, one can obtain that the RBF neural network transformation model established in this paper has a global and accurate description for the transformation relationship between the thrust-vectoring vane deflections and the resultant thrust deviation angles. Moreover, it can show the characteristics of the thrust-vectoring more precisely.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"310 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transformation model of thrust-vectoring using RBF neural network\",\"authors\":\"Kenan Yong, Hui Ye, Mou Chen, Qingxian Wu\",\"doi\":\"10.1109/CHICC.2014.6895788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a transformation model between the thrust-vectoring vane deflections and the resultant thrust deviation angles is established for the thrust-vectoring with three vane construction based on the radial basis function (RBF) neural network. The RBF neural network is trained using the experiment transformation data from NASA research memorandum via the generalized growing and pruning algorithm (GGAP). The established RBF neural network model can eliminate the inaccuracy of existing estimation model and avoids the modeling difficulties using the experiment data. To test the correctness of the transformation model using RBF neural network, it is compared with the existing estimation model. Through the simulation results, one can obtain that the RBF neural network transformation model established in this paper has a global and accurate description for the transformation relationship between the thrust-vectoring vane deflections and the resultant thrust deviation angles. Moreover, it can show the characteristics of the thrust-vectoring more precisely.\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"310 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CHICC.2014.6895788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHICC.2014.6895788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于径向基函数(RBF)神经网络,建立了三叶片推力矢量结构的推力矢量叶片挠度与最终推力偏差角之间的转换模型。利用NASA研究备忘录中的实验变换数据,采用广义生长与修剪算法(GGAP)对RBF神经网络进行训练。所建立的RBF神经网络模型消除了现有估计模型的不准确性,避免了利用实验数据建模的困难。为了验证RBF神经网络转换模型的正确性,将其与现有的估计模型进行了比较。仿真结果表明,本文建立的RBF神经网络变换模型对推力矢量叶片挠度与最终推力偏差角之间的变换关系具有全局、准确的描述。此外,它还能更精确地显示推力矢量的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformation model of thrust-vectoring using RBF neural network
In this paper, a transformation model between the thrust-vectoring vane deflections and the resultant thrust deviation angles is established for the thrust-vectoring with three vane construction based on the radial basis function (RBF) neural network. The RBF neural network is trained using the experiment transformation data from NASA research memorandum via the generalized growing and pruning algorithm (GGAP). The established RBF neural network model can eliminate the inaccuracy of existing estimation model and avoids the modeling difficulties using the experiment data. To test the correctness of the transformation model using RBF neural network, it is compared with the existing estimation model. Through the simulation results, one can obtain that the RBF neural network transformation model established in this paper has a global and accurate description for the transformation relationship between the thrust-vectoring vane deflections and the resultant thrust deviation angles. Moreover, it can show the characteristics of the thrust-vectoring more precisely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信