将分位数回归与预测平均相结合,获得更准确的北池现货价格区间预测

J. Nowotarski, R. Weron
{"title":"将分位数回归与预测平均相结合,获得更准确的北池现货价格区间预测","authors":"J. Nowotarski, R. Weron","doi":"10.1109/EEM.2014.6861285","DOIUrl":null,"url":null,"abstract":"We evaluate a recently proposed method for constructing prediction intervals, which utilizes the concept of quantile regression (QR) and a pool of point forecasts of different time series models. We find that in terms of interval forecasting of Nord Pool day-ahead prices the new QR-based approach significantly outperforms prediction intervals obtained from standard, as well as, semi-parametric autoregressive time series models.","PeriodicalId":261127,"journal":{"name":"11th International Conference on the European Energy Market (EEM14)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Merging quantile regression with forecast averaging to obtain more accurate interval forecasts of Nord Pool spot prices\",\"authors\":\"J. Nowotarski, R. Weron\",\"doi\":\"10.1109/EEM.2014.6861285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We evaluate a recently proposed method for constructing prediction intervals, which utilizes the concept of quantile regression (QR) and a pool of point forecasts of different time series models. We find that in terms of interval forecasting of Nord Pool day-ahead prices the new QR-based approach significantly outperforms prediction intervals obtained from standard, as well as, semi-parametric autoregressive time series models.\",\"PeriodicalId\":261127,\"journal\":{\"name\":\"11th International Conference on the European Energy Market (EEM14)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th International Conference on the European Energy Market (EEM14)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEM.2014.6861285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th International Conference on the European Energy Market (EEM14)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEM.2014.6861285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们评估了最近提出的一种构造预测区间的方法,该方法利用了分位数回归(QR)的概念和不同时间序列模型的点预测池。我们发现,就Nord Pool日前价格的区间预测而言,新的基于qr的方法显著优于从标准以及半参数自回归时间序列模型获得的预测区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Merging quantile regression with forecast averaging to obtain more accurate interval forecasts of Nord Pool spot prices
We evaluate a recently proposed method for constructing prediction intervals, which utilizes the concept of quantile regression (QR) and a pool of point forecasts of different time series models. We find that in terms of interval forecasting of Nord Pool day-ahead prices the new QR-based approach significantly outperforms prediction intervals obtained from standard, as well as, semi-parametric autoregressive time series models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信