{"title":"机器学习中一种处理不平衡数据集的新方法","authors":"Taj Sapra, Shubhama, S. Meena","doi":"10.1109/I2CT57861.2023.10126309","DOIUrl":null,"url":null,"abstract":"The world has seen an exponential rise in machine learning and artificial intelligence since the 1990s. We apply machine learning models to solve various real life problems like regression and classification. However, class imbalance is a very common issue faced for classification problems in machine learning. In this study, we propose new greedy resampling techniques to solve the problem of class imbalance. We shall also compare the results of these techniques with the Synthetic Minority Over-sampling Technique (SMOTE).","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel approach to Handle Imbalanced Dataset in Machine Learning\",\"authors\":\"Taj Sapra, Shubhama, S. Meena\",\"doi\":\"10.1109/I2CT57861.2023.10126309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The world has seen an exponential rise in machine learning and artificial intelligence since the 1990s. We apply machine learning models to solve various real life problems like regression and classification. However, class imbalance is a very common issue faced for classification problems in machine learning. In this study, we propose new greedy resampling techniques to solve the problem of class imbalance. We shall also compare the results of these techniques with the Synthetic Minority Over-sampling Technique (SMOTE).\",\"PeriodicalId\":150346,\"journal\":{\"name\":\"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CT57861.2023.10126309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel approach to Handle Imbalanced Dataset in Machine Learning
The world has seen an exponential rise in machine learning and artificial intelligence since the 1990s. We apply machine learning models to solve various real life problems like regression and classification. However, class imbalance is a very common issue faced for classification problems in machine learning. In this study, we propose new greedy resampling techniques to solve the problem of class imbalance. We shall also compare the results of these techniques with the Synthetic Minority Over-sampling Technique (SMOTE).