GMRES算法的收敛界

G. Xie
{"title":"GMRES算法的收敛界","authors":"G. Xie","doi":"10.1109/PDCAT.2003.1236406","DOIUrl":null,"url":null,"abstract":"We first make a brief review of GMRES convergence results. Then we derive new bounds for the GMRES residual norm by making use of a unitary matrix U and a Hermitian positive definite matrix P, which are GMRES-equivalent to the coefficient matrix A with respect to the initial residual r/sub 0/. The existence of such U and P was proved by Leonid (2000). As a GMRES residual norm bound for linear systems with Hermitian positive definite coefficient matrices is known and a GMRES residual norm bound for linear systems with unitary coefficient matrices can be readily derived from Liesen's (2000) work, our new bounds follow from the fact that two GMRES-equivalent matrices make the same residual.","PeriodicalId":145111,"journal":{"name":"Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On convergence bounds of GMRES algorithm\",\"authors\":\"G. Xie\",\"doi\":\"10.1109/PDCAT.2003.1236406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We first make a brief review of GMRES convergence results. Then we derive new bounds for the GMRES residual norm by making use of a unitary matrix U and a Hermitian positive definite matrix P, which are GMRES-equivalent to the coefficient matrix A with respect to the initial residual r/sub 0/. The existence of such U and P was proved by Leonid (2000). As a GMRES residual norm bound for linear systems with Hermitian positive definite coefficient matrices is known and a GMRES residual norm bound for linear systems with unitary coefficient matrices can be readily derived from Liesen's (2000) work, our new bounds follow from the fact that two GMRES-equivalent matrices make the same residual.\",\"PeriodicalId\":145111,\"journal\":{\"name\":\"Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2003.1236406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Parallel and Distributed Computing, Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2003.1236406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先对GMRES的收敛结果进行了简要回顾。然后,我们利用一元矩阵U和厄米正定矩阵P推导出GMRES残差模的新界,它们与系数矩阵a相对于初始残差r/下标0/等效。Leonid(2000)证明了U和P的存在性。由于已知具有厄米正定系数矩阵的线性系统的GMRES残余范数界,并且可以很容易地从Liesen(2000)的工作中推导出具有酉系数矩阵的线性系统的GMRES残余范数界,因此我们的新界是基于两个等效的GMRES矩阵具有相同的残差这一事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On convergence bounds of GMRES algorithm
We first make a brief review of GMRES convergence results. Then we derive new bounds for the GMRES residual norm by making use of a unitary matrix U and a Hermitian positive definite matrix P, which are GMRES-equivalent to the coefficient matrix A with respect to the initial residual r/sub 0/. The existence of such U and P was proved by Leonid (2000). As a GMRES residual norm bound for linear systems with Hermitian positive definite coefficient matrices is known and a GMRES residual norm bound for linear systems with unitary coefficient matrices can be readily derived from Liesen's (2000) work, our new bounds follow from the fact that two GMRES-equivalent matrices make the same residual.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信