J. Krieglstein, Gesche Held, B. A. Bálint, Frank Nägele, Werner Kraus
{"title":"混合现实中基于技能的机器人编程,使用力支持的数字双胞胎进行临时验证","authors":"J. Krieglstein, Gesche Held, B. A. Bálint, Frank Nägele, Werner Kraus","doi":"10.1109/ICRA48891.2023.10161095","DOIUrl":null,"url":null,"abstract":"Skill-based programming has proven to be advantageous for assembly tasks, but still requires expert knowledge, especially for force-controlled applications. However, it is error-prone due to the multitude of parameters, e.g. different coordinate frames and either position-, velocity- or force-controlled motions on the axes of a frame. We propose a mixed reality based solution, which systematically visualizes the geometric constraints of advanced high-level skills directly in the real-world robotic environment and provides a user interface to create applications efficiently and safely in mixed reality. Therefore, state-machine information is also visualized, and a holographic digital twin allows the user to ad-hoc validate the program via force-enabled simulation. The approach is evaluated on a top hat rail mounting task, proving the capability of the system to handle advanced assembly programming tasks efficiently and tangibly.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skill-based Robot Programming in Mixed Reality with Ad-hoc Validation Using a Force-enabled Digital Twin\",\"authors\":\"J. Krieglstein, Gesche Held, B. A. Bálint, Frank Nägele, Werner Kraus\",\"doi\":\"10.1109/ICRA48891.2023.10161095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skill-based programming has proven to be advantageous for assembly tasks, but still requires expert knowledge, especially for force-controlled applications. However, it is error-prone due to the multitude of parameters, e.g. different coordinate frames and either position-, velocity- or force-controlled motions on the axes of a frame. We propose a mixed reality based solution, which systematically visualizes the geometric constraints of advanced high-level skills directly in the real-world robotic environment and provides a user interface to create applications efficiently and safely in mixed reality. Therefore, state-machine information is also visualized, and a holographic digital twin allows the user to ad-hoc validate the program via force-enabled simulation. The approach is evaluated on a top hat rail mounting task, proving the capability of the system to handle advanced assembly programming tasks efficiently and tangibly.\",\"PeriodicalId\":360533,\"journal\":{\"name\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48891.2023.10161095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10161095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Skill-based Robot Programming in Mixed Reality with Ad-hoc Validation Using a Force-enabled Digital Twin
Skill-based programming has proven to be advantageous for assembly tasks, but still requires expert knowledge, especially for force-controlled applications. However, it is error-prone due to the multitude of parameters, e.g. different coordinate frames and either position-, velocity- or force-controlled motions on the axes of a frame. We propose a mixed reality based solution, which systematically visualizes the geometric constraints of advanced high-level skills directly in the real-world robotic environment and provides a user interface to create applications efficiently and safely in mixed reality. Therefore, state-machine information is also visualized, and a holographic digital twin allows the user to ad-hoc validate the program via force-enabled simulation. The approach is evaluated on a top hat rail mounting task, proving the capability of the system to handle advanced assembly programming tasks efficiently and tangibly.