一种用于图像分割的颜色聚类技术

Mehmet Celenk
{"title":"一种用于图像分割的颜色聚类技术","authors":"Mehmet Celenk","doi":"10.1016/0734-189X(90)90052-W","DOIUrl":null,"url":null,"abstract":"<div><p>This paperr describes a clustering algorithm for segmenting the color images of natural scenes. The proposed method operates in the 1976 CIE (<em>L<sup>∗</sup>, a<sup>∗</sup>, b<sup>∗</sup></em>)-uniform color coordinate system. It detects image clusters in some circular-cylindrical decision elements of the color space. This estimates the clusters' color distributions without imposing any constraints on their forms. Surfaces of the decision elements are formed with constant lightness and constant chromaticity loci. Each surface is obtained using only 1D histogramsof the <em>L<sup>∗</sup>, H°, C<sup>∗</sup></em> cylindrical coordinates of the image data or the extracted feature vector. The Fisher linear discriminant method is then used to project simultaneously the detected color clusters onto a line for 1D thresholding. This permits utilization of all the color properties for segmentation and inherently recognizes their respective cross correlation. In this respect, the proposed algorithm also differs from the multiple histogram-based thresholding schemes.</p></div>","PeriodicalId":100319,"journal":{"name":"Computer Vision, Graphics, and Image Processing","volume":"52 2","pages":"Pages 145-170"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0734-189X(90)90052-W","citationCount":"290","resultStr":"{\"title\":\"A color clustering technique for image segmentation\",\"authors\":\"Mehmet Celenk\",\"doi\":\"10.1016/0734-189X(90)90052-W\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paperr describes a clustering algorithm for segmenting the color images of natural scenes. The proposed method operates in the 1976 CIE (<em>L<sup>∗</sup>, a<sup>∗</sup>, b<sup>∗</sup></em>)-uniform color coordinate system. It detects image clusters in some circular-cylindrical decision elements of the color space. This estimates the clusters' color distributions without imposing any constraints on their forms. Surfaces of the decision elements are formed with constant lightness and constant chromaticity loci. Each surface is obtained using only 1D histogramsof the <em>L<sup>∗</sup>, H°, C<sup>∗</sup></em> cylindrical coordinates of the image data or the extracted feature vector. The Fisher linear discriminant method is then used to project simultaneously the detected color clusters onto a line for 1D thresholding. This permits utilization of all the color properties for segmentation and inherently recognizes their respective cross correlation. In this respect, the proposed algorithm also differs from the multiple histogram-based thresholding schemes.</p></div>\",\"PeriodicalId\":100319,\"journal\":{\"name\":\"Computer Vision, Graphics, and Image Processing\",\"volume\":\"52 2\",\"pages\":\"Pages 145-170\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0734-189X(90)90052-W\",\"citationCount\":\"290\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision, Graphics, and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0734189X9090052W\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision, Graphics, and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0734189X9090052W","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 290

摘要

本文描述了一种用于自然场景彩色图像分割的聚类算法。所提出的方法在1976 CIE (L∗,a∗,b∗)-均匀颜色坐标系中运行。它在颜色空间的一些圆筒形决定元素中检测图像簇。这样可以估计星团的颜色分布,而不会对它们的形式施加任何限制。决策元素的曲面具有恒定的亮度和恒定的色度轨迹。每个表面仅使用图像数据的L *, H°,C *柱面坐标或提取的特征向量的1D直方图获得。然后使用Fisher线性判别方法将检测到的颜色簇同时投影到一条线上进行1D阈值处理。这允许利用所有颜色属性进行分割,并固有地识别它们各自的相互关系。在这方面,本文提出的算法也不同于基于多个直方图的阈值方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A color clustering technique for image segmentation

This paperr describes a clustering algorithm for segmenting the color images of natural scenes. The proposed method operates in the 1976 CIE (L, a, b)-uniform color coordinate system. It detects image clusters in some circular-cylindrical decision elements of the color space. This estimates the clusters' color distributions without imposing any constraints on their forms. Surfaces of the decision elements are formed with constant lightness and constant chromaticity loci. Each surface is obtained using only 1D histogramsof the L, H°, C cylindrical coordinates of the image data or the extracted feature vector. The Fisher linear discriminant method is then used to project simultaneously the detected color clusters onto a line for 1D thresholding. This permits utilization of all the color properties for segmentation and inherently recognizes their respective cross correlation. In this respect, the proposed algorithm also differs from the multiple histogram-based thresholding schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信