Chaoyong Peng, Ai Wang, Jianping Peng, Xiaorong Gao
{"title":"基于故障特征提取算法的轴箱轴承路旁声学诊断","authors":"Chaoyong Peng, Ai Wang, Jianping Peng, Xiaorong Gao","doi":"10.1109/FENDT.2018.8681964","DOIUrl":null,"url":null,"abstract":"As one of the key components of railway vehicles, the operation condition of the axle box bearing has a significant effect on traffic safety. The wayside monitoring sound of train axle box bearing is an amplitude modulation and frequency modulation signal with complex train running noise. Although empirical mode decomposition (EMD) and some improved time-frequency algorithms have been proved to be useful in bearing vibration signal processing, it is hard to extract the bearing fault signal from serious trackside acoustic background noises by using those algorithms. Therefore, a kurtosis-optimization-based wavelet packet (KWP) feature extraction algorithm is proposed, as the kurtosis is the key indicator of bearing fault signal in time domain. After beamforming of microphone array, the assessment of KWP is conducted by comparing with exiting algorithms. The test results of 50 fault bearing data indicate that the KWP is more efficient than high frequency resonance technique (HFR) and EMD in an environment where authentic railway noise were present.","PeriodicalId":113185,"journal":{"name":"2018 IEEE Far East NDT New Technology & Application Forum (FENDT)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wayside Acoustic Diagnosis of Axle Box Bearing Based on Fault Feature Extraction Algorithm\",\"authors\":\"Chaoyong Peng, Ai Wang, Jianping Peng, Xiaorong Gao\",\"doi\":\"10.1109/FENDT.2018.8681964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the key components of railway vehicles, the operation condition of the axle box bearing has a significant effect on traffic safety. The wayside monitoring sound of train axle box bearing is an amplitude modulation and frequency modulation signal with complex train running noise. Although empirical mode decomposition (EMD) and some improved time-frequency algorithms have been proved to be useful in bearing vibration signal processing, it is hard to extract the bearing fault signal from serious trackside acoustic background noises by using those algorithms. Therefore, a kurtosis-optimization-based wavelet packet (KWP) feature extraction algorithm is proposed, as the kurtosis is the key indicator of bearing fault signal in time domain. After beamforming of microphone array, the assessment of KWP is conducted by comparing with exiting algorithms. The test results of 50 fault bearing data indicate that the KWP is more efficient than high frequency resonance technique (HFR) and EMD in an environment where authentic railway noise were present.\",\"PeriodicalId\":113185,\"journal\":{\"name\":\"2018 IEEE Far East NDT New Technology & Application Forum (FENDT)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Far East NDT New Technology & Application Forum (FENDT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FENDT.2018.8681964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Far East NDT New Technology & Application Forum (FENDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FENDT.2018.8681964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wayside Acoustic Diagnosis of Axle Box Bearing Based on Fault Feature Extraction Algorithm
As one of the key components of railway vehicles, the operation condition of the axle box bearing has a significant effect on traffic safety. The wayside monitoring sound of train axle box bearing is an amplitude modulation and frequency modulation signal with complex train running noise. Although empirical mode decomposition (EMD) and some improved time-frequency algorithms have been proved to be useful in bearing vibration signal processing, it is hard to extract the bearing fault signal from serious trackside acoustic background noises by using those algorithms. Therefore, a kurtosis-optimization-based wavelet packet (KWP) feature extraction algorithm is proposed, as the kurtosis is the key indicator of bearing fault signal in time domain. After beamforming of microphone array, the assessment of KWP is conducted by comparing with exiting algorithms. The test results of 50 fault bearing data indicate that the KWP is more efficient than high frequency resonance technique (HFR) and EMD in an environment where authentic railway noise were present.