基于学习向量量化方法的菠萝果实质量分类

M. Efendi, Sarjon Defit, G. W. Nurcahyo
{"title":"基于学习向量量化方法的菠萝果实质量分类","authors":"M. Efendi, Sarjon Defit, G. W. Nurcahyo","doi":"10.24014/ijaidm.v2i2.4621","DOIUrl":null,"url":null,"abstract":"The demands of publics for these fruits Ananas Comosus Merr (Pineapple) became higher years to years because of the fruit has so many virtues for human healthy and the taste of this fruit is sweet and fresh. Therefore the pineapple farmers have to protect the quality and quantity of this plant in order to get high produce. This research help the pineapple farmers to classify to quality of pineapple fruits by using neural network with Learning Vector Quantization method which has 2 classes, such as: First quality (1st) and Second quality (2nd) quality. This method has 2 process they are : training process and testing process. To input data in the training and testing process are using uniformity, characteristic of varieties, the rate of aging, hardness, size, stem, crown, manure, destroyer, spoilage, rotten and the total solid content of the least was taken by observed the crop of pineapple farmers in the Teluk Batil village Sungai Apit district Siak Riau province. Learning Vector Quantization method automatically will classify the pineapple into their class. The result of the testing classification has gotten the accuracy 65.56% for the first (1st) quality and 34.44% for the second (2nd) quality. At the second testing has gotten 66.67% the accuracy for the first (1st) quality and 33.33% for the second (2nd) quality. At the third (3rd) testing has gotten 64.44% the accuracy for first (1st) quality and 35.56% for the second (2nd) quality.","PeriodicalId":385582,"journal":{"name":"Indonesian Journal of Artificial Intelligence and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Pineapple Fruit Comosus Merr (Nanas) Quality Using Learning Vector Quantization Method\",\"authors\":\"M. Efendi, Sarjon Defit, G. W. Nurcahyo\",\"doi\":\"10.24014/ijaidm.v2i2.4621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demands of publics for these fruits Ananas Comosus Merr (Pineapple) became higher years to years because of the fruit has so many virtues for human healthy and the taste of this fruit is sweet and fresh. Therefore the pineapple farmers have to protect the quality and quantity of this plant in order to get high produce. This research help the pineapple farmers to classify to quality of pineapple fruits by using neural network with Learning Vector Quantization method which has 2 classes, such as: First quality (1st) and Second quality (2nd) quality. This method has 2 process they are : training process and testing process. To input data in the training and testing process are using uniformity, characteristic of varieties, the rate of aging, hardness, size, stem, crown, manure, destroyer, spoilage, rotten and the total solid content of the least was taken by observed the crop of pineapple farmers in the Teluk Batil village Sungai Apit district Siak Riau province. Learning Vector Quantization method automatically will classify the pineapple into their class. The result of the testing classification has gotten the accuracy 65.56% for the first (1st) quality and 34.44% for the second (2nd) quality. At the second testing has gotten 66.67% the accuracy for the first (1st) quality and 33.33% for the second (2nd) quality. At the third (3rd) testing has gotten 64.44% the accuracy for first (1st) quality and 35.56% for the second (2nd) quality.\",\"PeriodicalId\":385582,\"journal\":{\"name\":\"Indonesian Journal of Artificial Intelligence and Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Artificial Intelligence and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24014/ijaidm.v2i2.4621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Artificial Intelligence and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24014/ijaidm.v2i2.4621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

公众对这些水果的需求逐年增加,因为这种水果对人体健康有很多好处,而且这种水果的味道又甜又新鲜。因此,菠萝种植者必须保证这种植物的质量和数量,以获得高产量。本研究利用神经网络与学习向量量化方法,帮助菠萝种植者对菠萝果实的品质进行分类,该方法有2个等级,即一等品质(1st)和二等品质(2nd)。该方法有两个过程:训练过程和测试过程。在培训和测试过程中输入的数据是采用均匀性、品种特性、老化率、硬度、大小、茎、冠、肥料、破坏、腐败、腐烂和总固体含量最少的方法,观察了锡廖内省Sungai Apit区Teluk Batil村菠萝农民的作物。学习向量量化方法将菠萝自动分类到它们的类别中。测试分类结果表明,第一(1)质量的准确率为65.56%,第二(2)质量的准确率为34.44%。在第二次测试中,第一(1)质量的准确率为66.67%,第二(2)质量的准确率为33.33%。在第三(3)次测试中,第一(1)质量的准确率为64.44%,第二(2)质量的准确率为35.56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Pineapple Fruit Comosus Merr (Nanas) Quality Using Learning Vector Quantization Method
The demands of publics for these fruits Ananas Comosus Merr (Pineapple) became higher years to years because of the fruit has so many virtues for human healthy and the taste of this fruit is sweet and fresh. Therefore the pineapple farmers have to protect the quality and quantity of this plant in order to get high produce. This research help the pineapple farmers to classify to quality of pineapple fruits by using neural network with Learning Vector Quantization method which has 2 classes, such as: First quality (1st) and Second quality (2nd) quality. This method has 2 process they are : training process and testing process. To input data in the training and testing process are using uniformity, characteristic of varieties, the rate of aging, hardness, size, stem, crown, manure, destroyer, spoilage, rotten and the total solid content of the least was taken by observed the crop of pineapple farmers in the Teluk Batil village Sungai Apit district Siak Riau province. Learning Vector Quantization method automatically will classify the pineapple into their class. The result of the testing classification has gotten the accuracy 65.56% for the first (1st) quality and 34.44% for the second (2nd) quality. At the second testing has gotten 66.67% the accuracy for the first (1st) quality and 33.33% for the second (2nd) quality. At the third (3rd) testing has gotten 64.44% the accuracy for first (1st) quality and 35.56% for the second (2nd) quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信