高斯正交规则的广义特征值方法

Grigoriy Blekherman, Mario Kummer, C. Riener, M. Schweighofer, C. Vinzant
{"title":"高斯正交规则的广义特征值方法","authors":"Grigoriy Blekherman, Mario Kummer, C. Riener, M. Schweighofer, C. Vinzant","doi":"10.5802/ahl.62","DOIUrl":null,"url":null,"abstract":"A quadrature rule of a measure $\\mu$ on the real line represents a convex combination of finitely many evaluations at points, called nodes, that agrees with integration against $\\mu$ for all polynomials up to some fixed degree. In this paper, we present a bivariate polynomial whose roots parametrize the nodes of minimal quadrature rules for measures on the real line. We give two symmetric determinantal formulas for this polynomial, which translate the problem of finding the nodes to solving a generalized eigenvalue problem.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized eigenvalue methods for Gaussian quadrature rules\",\"authors\":\"Grigoriy Blekherman, Mario Kummer, C. Riener, M. Schweighofer, C. Vinzant\",\"doi\":\"10.5802/ahl.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A quadrature rule of a measure $\\\\mu$ on the real line represents a convex combination of finitely many evaluations at points, called nodes, that agrees with integration against $\\\\mu$ for all polynomials up to some fixed degree. In this paper, we present a bivariate polynomial whose roots parametrize the nodes of minimal quadrature rules for measures on the real line. We give two symmetric determinantal formulas for this polynomial, which translate the problem of finding the nodes to solving a generalized eigenvalue problem.\",\"PeriodicalId\":192307,\"journal\":{\"name\":\"Annales Henri Lebesgue\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Lebesgue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ahl.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实线上测度$\mu$的正交规则表示在点(称为节点)上的有限多个求值的凸组合,它与对$\mu$的积分一致,直到某个固定的度。本文给出了一个二元多项式,其根参数化了实线上测度的最小正交规则的节点。我们给出了该多项式的两个对称行列式,将求节点问题转化为求解广义特征值问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized eigenvalue methods for Gaussian quadrature rules
A quadrature rule of a measure $\mu$ on the real line represents a convex combination of finitely many evaluations at points, called nodes, that agrees with integration against $\mu$ for all polynomials up to some fixed degree. In this paper, we present a bivariate polynomial whose roots parametrize the nodes of minimal quadrature rules for measures on the real line. We give two symmetric determinantal formulas for this polynomial, which translate the problem of finding the nodes to solving a generalized eigenvalue problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信