用于自适应基站优化的可参数化移动工作负载

Julian Robledo, J. Castrillón
{"title":"用于自适应基站优化的可参数化移动工作负载","authors":"Julian Robledo, J. Castrillón","doi":"10.1109/MCSoC57363.2022.00067","DOIUrl":null,"url":null,"abstract":"Recent works on 5G baseband processing systems address the optimization of applications with different require-ments of quality of service (QoS). The volume and heterogeneity of applications that have to be processed on a base station are growing and 5G introduces new use cases that push system designers towards more flexible and adaptable approaches. To investigate future network challenges of mobile communications, a good methodology for the generation of realistic workloads, that allows target optimizations of different traffic scenarios, is required. In this paper, we study the variation of real traffic data on multiple base stations and identify the main sources for the high variation of the 5G workloads. We propose a methodology for parameterizable workload generation for users with different QoS requirements that enables optimization techniques in base-band processing systems. We demonstrate the feasibility of our approach based on a virtual base station using a heterogeneous hardware model and various state-of-the-art mapping policies.","PeriodicalId":150801,"journal":{"name":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameterizable mobile workloads for adaptable base station optimizations\",\"authors\":\"Julian Robledo, J. Castrillón\",\"doi\":\"10.1109/MCSoC57363.2022.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent works on 5G baseband processing systems address the optimization of applications with different require-ments of quality of service (QoS). The volume and heterogeneity of applications that have to be processed on a base station are growing and 5G introduces new use cases that push system designers towards more flexible and adaptable approaches. To investigate future network challenges of mobile communications, a good methodology for the generation of realistic workloads, that allows target optimizations of different traffic scenarios, is required. In this paper, we study the variation of real traffic data on multiple base stations and identify the main sources for the high variation of the 5G workloads. We propose a methodology for parameterizable workload generation for users with different QoS requirements that enables optimization techniques in base-band processing systems. We demonstrate the feasibility of our approach based on a virtual base station using a heterogeneous hardware model and various state-of-the-art mapping policies.\",\"PeriodicalId\":150801,\"journal\":{\"name\":\"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC57363.2022.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC57363.2022.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近关于5G基带处理系统的工作解决了具有不同服务质量(QoS)要求的应用的优化问题。必须在基站上处理的应用程序的数量和异质性正在增长,5G引入了新的用例,推动系统设计人员采用更灵活和适应性更强的方法。为了研究移动通信的未来网络挑战,需要一种良好的方法来生成现实的工作负载,从而允许对不同的流量场景进行目标优化。本文研究了多个基站真实流量数据的变化,确定了5G工作负载高变化的主要来源。我们提出了一种为具有不同QoS要求的用户生成可参数化工作负载的方法,该方法使基带处理系统中的优化技术成为可能。我们展示了我们的方法的可行性,该方法基于使用异构硬件模型和各种最先进的映射策略的虚拟基站。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameterizable mobile workloads for adaptable base station optimizations
Recent works on 5G baseband processing systems address the optimization of applications with different require-ments of quality of service (QoS). The volume and heterogeneity of applications that have to be processed on a base station are growing and 5G introduces new use cases that push system designers towards more flexible and adaptable approaches. To investigate future network challenges of mobile communications, a good methodology for the generation of realistic workloads, that allows target optimizations of different traffic scenarios, is required. In this paper, we study the variation of real traffic data on multiple base stations and identify the main sources for the high variation of the 5G workloads. We propose a methodology for parameterizable workload generation for users with different QoS requirements that enables optimization techniques in base-band processing systems. We demonstrate the feasibility of our approach based on a virtual base station using a heterogeneous hardware model and various state-of-the-art mapping policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信