3种深度学习模型用于子宫颈抹片筛查的比较研究

Y. Promworn, C. Pintavirooj, W. Piyawattanametha
{"title":"3种深度学习模型用于子宫颈抹片筛查的比较研究","authors":"Y. Promworn, C. Pintavirooj, W. Piyawattanametha","doi":"10.1109/BMEICON.2018.8609945","DOIUrl":null,"url":null,"abstract":"This work presents a comparative study of automated screening procedure for Pap smear with deep learning technology. Three convolution neural network models (AlexNet, densenet161 and resnet101) were employed for detecting the presence of cervical precancerous or cancerous cells from Pap smear database. The study compares accuracy, sensitivity, specificity, and computation time for each deep learning model. The best model is the densenet161 due to its high sensitivity and accuracy which are key factors in an automated Pap smear screening procedure to offer the best early detection of cervical cancer to better treatment outcomes.","PeriodicalId":232271,"journal":{"name":"2018 11th Biomedical Engineering International Conference (BMEiCON)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A comparative study of 3 deep learning models for Pap smear screening\",\"authors\":\"Y. Promworn, C. Pintavirooj, W. Piyawattanametha\",\"doi\":\"10.1109/BMEICON.2018.8609945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a comparative study of automated screening procedure for Pap smear with deep learning technology. Three convolution neural network models (AlexNet, densenet161 and resnet101) were employed for detecting the presence of cervical precancerous or cancerous cells from Pap smear database. The study compares accuracy, sensitivity, specificity, and computation time for each deep learning model. The best model is the densenet161 due to its high sensitivity and accuracy which are key factors in an automated Pap smear screening procedure to offer the best early detection of cervical cancer to better treatment outcomes.\",\"PeriodicalId\":232271,\"journal\":{\"name\":\"2018 11th Biomedical Engineering International Conference (BMEiCON)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 11th Biomedical Engineering International Conference (BMEiCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEICON.2018.8609945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEICON.2018.8609945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作提出了与深度学习技术的巴氏涂片自动筛选程序的比较研究。采用三种卷积神经网络模型(AlexNet、densenet161和resnet101)检测巴氏涂片数据库中宫颈癌前或癌性细胞的存在。该研究比较了每种深度学习模型的准确性、灵敏度、特异性和计算时间。最好的模型是densenet161,因为它具有高灵敏度和准确性,这是自动子宫颈抹片检查程序的关键因素,可以提供最佳的宫颈癌早期检测,以获得更好的治疗结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of 3 deep learning models for Pap smear screening
This work presents a comparative study of automated screening procedure for Pap smear with deep learning technology. Three convolution neural network models (AlexNet, densenet161 and resnet101) were employed for detecting the presence of cervical precancerous or cancerous cells from Pap smear database. The study compares accuracy, sensitivity, specificity, and computation time for each deep learning model. The best model is the densenet161 due to its high sensitivity and accuracy which are key factors in an automated Pap smear screening procedure to offer the best early detection of cervical cancer to better treatment outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信