用于视听广播转录系统的光学字符识别

J. Chaloupka, K. Paleček, P. Cerva, J. Zdánský
{"title":"用于视听广播转录系统的光学字符识别","authors":"J. Chaloupka, K. Paleček, P. Cerva, J. Zdánský","doi":"10.1109/CogInfoCom50765.2020.9237867","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of optical character recognition (OCR) for system of audio-visual broadcast transcription. Characters were recognized from video frames by open-source program OCR Tesseract. The OCR in this program (from version 4) is based on Recurrent Neural Networks (RNN) and it uses text post-processing by bigram language model. However, the resulting recognized text contains a number of errors. In some images, the text is not detected and recognized correctly or it is not detected at all. We have designed and tested image pre-processing and text post-processing methods for OCR error reduction. The word error rate (WER) was reduced from 29,4% to 15,4%.","PeriodicalId":236400,"journal":{"name":"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optical Character Recognition for Audio-Visual Broadcast Transcription System\",\"authors\":\"J. Chaloupka, K. Paleček, P. Cerva, J. Zdánský\",\"doi\":\"10.1109/CogInfoCom50765.2020.9237867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the use of optical character recognition (OCR) for system of audio-visual broadcast transcription. Characters were recognized from video frames by open-source program OCR Tesseract. The OCR in this program (from version 4) is based on Recurrent Neural Networks (RNN) and it uses text post-processing by bigram language model. However, the resulting recognized text contains a number of errors. In some images, the text is not detected and recognized correctly or it is not detected at all. We have designed and tested image pre-processing and text post-processing methods for OCR error reduction. The word error rate (WER) was reduced from 29,4% to 15,4%.\",\"PeriodicalId\":236400,\"journal\":{\"name\":\"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CogInfoCom50765.2020.9237867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogInfoCom50765.2020.9237867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了光学字符识别(OCR)在视听广播转录系统中的应用。字符被开源程序OCR Tesseract从视频帧中识别出来。本程序(版本4)中的OCR基于递归神经网络(RNN),并使用双元语言模型进行文本后处理。然而,得到的可识别文本包含许多错误。在一些图像中,文本没有被正确检测和识别,或者根本没有被检测到。我们设计并测试了图像预处理和文本后处理方法,以减少OCR误差。单词错误率(WER)由29.4%降至15.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical Character Recognition for Audio-Visual Broadcast Transcription System
This paper investigates the use of optical character recognition (OCR) for system of audio-visual broadcast transcription. Characters were recognized from video frames by open-source program OCR Tesseract. The OCR in this program (from version 4) is based on Recurrent Neural Networks (RNN) and it uses text post-processing by bigram language model. However, the resulting recognized text contains a number of errors. In some images, the text is not detected and recognized correctly or it is not detected at all. We have designed and tested image pre-processing and text post-processing methods for OCR error reduction. The word error rate (WER) was reduced from 29,4% to 15,4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信