{"title":"用于视听广播转录系统的光学字符识别","authors":"J. Chaloupka, K. Paleček, P. Cerva, J. Zdánský","doi":"10.1109/CogInfoCom50765.2020.9237867","DOIUrl":null,"url":null,"abstract":"This paper investigates the use of optical character recognition (OCR) for system of audio-visual broadcast transcription. Characters were recognized from video frames by open-source program OCR Tesseract. The OCR in this program (from version 4) is based on Recurrent Neural Networks (RNN) and it uses text post-processing by bigram language model. However, the resulting recognized text contains a number of errors. In some images, the text is not detected and recognized correctly or it is not detected at all. We have designed and tested image pre-processing and text post-processing methods for OCR error reduction. The word error rate (WER) was reduced from 29,4% to 15,4%.","PeriodicalId":236400,"journal":{"name":"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optical Character Recognition for Audio-Visual Broadcast Transcription System\",\"authors\":\"J. Chaloupka, K. Paleček, P. Cerva, J. Zdánský\",\"doi\":\"10.1109/CogInfoCom50765.2020.9237867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the use of optical character recognition (OCR) for system of audio-visual broadcast transcription. Characters were recognized from video frames by open-source program OCR Tesseract. The OCR in this program (from version 4) is based on Recurrent Neural Networks (RNN) and it uses text post-processing by bigram language model. However, the resulting recognized text contains a number of errors. In some images, the text is not detected and recognized correctly or it is not detected at all. We have designed and tested image pre-processing and text post-processing methods for OCR error reduction. The word error rate (WER) was reduced from 29,4% to 15,4%.\",\"PeriodicalId\":236400,\"journal\":{\"name\":\"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CogInfoCom50765.2020.9237867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogInfoCom50765.2020.9237867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optical Character Recognition for Audio-Visual Broadcast Transcription System
This paper investigates the use of optical character recognition (OCR) for system of audio-visual broadcast transcription. Characters were recognized from video frames by open-source program OCR Tesseract. The OCR in this program (from version 4) is based on Recurrent Neural Networks (RNN) and it uses text post-processing by bigram language model. However, the resulting recognized text contains a number of errors. In some images, the text is not detected and recognized correctly or it is not detected at all. We have designed and tested image pre-processing and text post-processing methods for OCR error reduction. The word error rate (WER) was reduced from 29,4% to 15,4%.