基于眼宽高比与脑电图(EEG)的慢眼皮运动(SEM)睡眠发作期检测

Glenn O. Avendaño, A. Ballado, Jennifer C. Dela Cruz, Sarah Alma P. Bentir, Juan Christian B. Camposanto, Alexis L. Carreos, Lorenz Albert B. Domingo, Kendrick Dale M.Garcia
{"title":"基于眼宽高比与脑电图(EEG)的慢眼皮运动(SEM)睡眠发作期检测","authors":"Glenn O. Avendaño, A. Ballado, Jennifer C. Dela Cruz, Sarah Alma P. Bentir, Juan Christian B. Camposanto, Alexis L. Carreos, Lorenz Albert B. Domingo, Kendrick Dale M.Garcia","doi":"10.1109/HNICEM.2018.8666429","DOIUrl":null,"url":null,"abstract":"This study presents the development of sleep onset period detection using SEM through eye aspect ratio with EEG. The researchers made use of a camera module, Neurosky Mindwave headset and a microcontroller coupled up with an improvised alarm system composed of a buzzer and vibration motors, to detect drowsiness of a subject and to alert the same. Raspberry Pi Camera Module was utilized for eyelid movement detection, Neurosky Mindwave headset for brain wave monitoring and a microcontroller to manage and activate the alarm system of the device. The results of the study showed that the integration of eyelid movement and electroencephalogram provides a more accurate method of determining sleep onset period compared to previous studies. The integrated SEM and EEG parameters provided 97.5% accuracy. This research will greatly benefit the safety of the drivers. Also, this will be beneficial to companies which require its employees to have a high level of alertness as demanded by certain occupations.","PeriodicalId":426103,"journal":{"name":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sleep Onset Period Detection Using Slow Eyelid Movement (SEM) Through Eye Aspect Ratio with Electroencephalogram (EEG)\",\"authors\":\"Glenn O. Avendaño, A. Ballado, Jennifer C. Dela Cruz, Sarah Alma P. Bentir, Juan Christian B. Camposanto, Alexis L. Carreos, Lorenz Albert B. Domingo, Kendrick Dale M.Garcia\",\"doi\":\"10.1109/HNICEM.2018.8666429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the development of sleep onset period detection using SEM through eye aspect ratio with EEG. The researchers made use of a camera module, Neurosky Mindwave headset and a microcontroller coupled up with an improvised alarm system composed of a buzzer and vibration motors, to detect drowsiness of a subject and to alert the same. Raspberry Pi Camera Module was utilized for eyelid movement detection, Neurosky Mindwave headset for brain wave monitoring and a microcontroller to manage and activate the alarm system of the device. The results of the study showed that the integration of eyelid movement and electroencephalogram provides a more accurate method of determining sleep onset period compared to previous studies. The integrated SEM and EEG parameters provided 97.5% accuracy. This research will greatly benefit the safety of the drivers. Also, this will be beneficial to companies which require its employees to have a high level of alertness as demanded by certain occupations.\",\"PeriodicalId\":426103,\"journal\":{\"name\":\"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM.2018.8666429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2018.8666429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了利用眼宽高比与脑电图相结合的扫描电镜检测睡眠发作期的研究进展。研究人员利用一个摄像头模块、Neurosky Mindwave耳机和一个微控制器,再加上一个由蜂鸣器和振动马达组成的临时警报系统,来检测受试者的睡意,并向其发出警报。树莓派相机模块用于眼睑运动检测,Neurosky Mindwave耳机用于脑电波监测,微控制器用于管理和激活设备的报警系统。研究结果表明,与以往的研究相比,眼睑运动和脑电图的结合提供了一种更准确的确定睡眠开始时间的方法。综合SEM和EEG参数,准确率为97.5%。这项研究将大大有利于驾驶员的安全。此外,这对那些要求员工在某些职业中保持高度警觉性的公司也是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sleep Onset Period Detection Using Slow Eyelid Movement (SEM) Through Eye Aspect Ratio with Electroencephalogram (EEG)
This study presents the development of sleep onset period detection using SEM through eye aspect ratio with EEG. The researchers made use of a camera module, Neurosky Mindwave headset and a microcontroller coupled up with an improvised alarm system composed of a buzzer and vibration motors, to detect drowsiness of a subject and to alert the same. Raspberry Pi Camera Module was utilized for eyelid movement detection, Neurosky Mindwave headset for brain wave monitoring and a microcontroller to manage and activate the alarm system of the device. The results of the study showed that the integration of eyelid movement and electroencephalogram provides a more accurate method of determining sleep onset period compared to previous studies. The integrated SEM and EEG parameters provided 97.5% accuracy. This research will greatly benefit the safety of the drivers. Also, this will be beneficial to companies which require its employees to have a high level of alertness as demanded by certain occupations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信