H. Kalantarian, N. Alshurafa, Ebrahim Nemati, Tuan Le, M. Sarrafzadeh
{"title":"基于智能手表的服药依从系统","authors":"H. Kalantarian, N. Alshurafa, Ebrahim Nemati, Tuan Le, M. Sarrafzadeh","doi":"10.1109/BSN.2015.7299348","DOIUrl":null,"url":null,"abstract":"Poor adherence to prescription medication can compromise treatment effectiveness and cost the billions of dollars in unnecessary health care expenses. Though various interventions have been proposed for estimating adherence rates, few have been shown to be effective. Digital systems are capable of estimating adherence without extensive user involvement and can potentially provide higher accuracy with lower user burden than manual methods. In this paper, we propose a smartwatch-based system for detecting adherence to prescription medication based the identification of several motions using the built-in tri-axial accelerometers and gyroscopes. The efficacy of the proposed technique is confirmed through a survey of medication ingestion habits and experimental results on movement classification.","PeriodicalId":447934,"journal":{"name":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"A smartwatch-based medication adherence system\",\"authors\":\"H. Kalantarian, N. Alshurafa, Ebrahim Nemati, Tuan Le, M. Sarrafzadeh\",\"doi\":\"10.1109/BSN.2015.7299348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poor adherence to prescription medication can compromise treatment effectiveness and cost the billions of dollars in unnecessary health care expenses. Though various interventions have been proposed for estimating adherence rates, few have been shown to be effective. Digital systems are capable of estimating adherence without extensive user involvement and can potentially provide higher accuracy with lower user burden than manual methods. In this paper, we propose a smartwatch-based system for detecting adherence to prescription medication based the identification of several motions using the built-in tri-axial accelerometers and gyroscopes. The efficacy of the proposed technique is confirmed through a survey of medication ingestion habits and experimental results on movement classification.\",\"PeriodicalId\":447934,\"journal\":{\"name\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2015.7299348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2015.7299348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poor adherence to prescription medication can compromise treatment effectiveness and cost the billions of dollars in unnecessary health care expenses. Though various interventions have been proposed for estimating adherence rates, few have been shown to be effective. Digital systems are capable of estimating adherence without extensive user involvement and can potentially provide higher accuracy with lower user burden than manual methods. In this paper, we propose a smartwatch-based system for detecting adherence to prescription medication based the identification of several motions using the built-in tri-axial accelerometers and gyroscopes. The efficacy of the proposed technique is confirmed through a survey of medication ingestion habits and experimental results on movement classification.