动态组合信用风险的顺序重要性抽样与重抽样

Shaojie Deng, K. Giesecke, T. Lai
{"title":"动态组合信用风险的顺序重要性抽样与重抽样","authors":"Shaojie Deng, K. Giesecke, T. Lai","doi":"10.2139/ssrn.1674204","DOIUrl":null,"url":null,"abstract":"We provide a sequential Monte Carlo method for estimating rare-event probabilities in dynamic, intensity-based point process models of portfolio credit risk. The method is based on a change of measure and involves a resampling mechanism. We propose resampling weights that lead, under technical conditions, to a logarithmically efficient simulation estimator of the probability of large portfolio losses. A numerical analysis illustrates the features of the method and contrasts it with other rare-event schemes recently developed for portfolio credit risk, including an interacting particle scheme and an importance sampling scheme.","PeriodicalId":246078,"journal":{"name":"OPER: Computational Techniques (Topic)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Sequential Importance Sampling and Resampling for Dynamic Portfolio Credit Risk\",\"authors\":\"Shaojie Deng, K. Giesecke, T. Lai\",\"doi\":\"10.2139/ssrn.1674204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a sequential Monte Carlo method for estimating rare-event probabilities in dynamic, intensity-based point process models of portfolio credit risk. The method is based on a change of measure and involves a resampling mechanism. We propose resampling weights that lead, under technical conditions, to a logarithmically efficient simulation estimator of the probability of large portfolio losses. A numerical analysis illustrates the features of the method and contrasts it with other rare-event schemes recently developed for portfolio credit risk, including an interacting particle scheme and an importance sampling scheme.\",\"PeriodicalId\":246078,\"journal\":{\"name\":\"OPER: Computational Techniques (Topic)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OPER: Computational Techniques (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1674204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OPER: Computational Techniques (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1674204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们提供了一种序列蒙特卡罗方法来估计组合信用风险的动态、基于强度的点过程模型中的罕见事件概率。该方法基于测量的变化,并涉及重采样机制。我们提出了重采样权值,在技术条件下,对大型投资组合损失的概率进行对数有效的模拟估计。数值分析说明了该方法的特点,并将其与最近开发的用于组合信用风险的其他罕见事件方案(包括相互作用粒子方案和重要抽样方案)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential Importance Sampling and Resampling for Dynamic Portfolio Credit Risk
We provide a sequential Monte Carlo method for estimating rare-event probabilities in dynamic, intensity-based point process models of portfolio credit risk. The method is based on a change of measure and involves a resampling mechanism. We propose resampling weights that lead, under technical conditions, to a logarithmically efficient simulation estimator of the probability of large portfolio losses. A numerical analysis illustrates the features of the method and contrasts it with other rare-event schemes recently developed for portfolio credit risk, including an interacting particle scheme and an importance sampling scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信