关于多元相关系数的构造

J. Merker, Gregor Schuldt
{"title":"关于多元相关系数的构造","authors":"J. Merker, Gregor Schuldt","doi":"10.1145/3409915.3409920","DOIUrl":null,"url":null,"abstract":"A multivariate (un)correlation coefficient maps a vector-valued random variable X = (X1,... XN) to a real number between 0 and 1, which indicates how linearly (un)correlated its components Xi, i = 1,..., N, are. In this paper, we provide a unified framework for multivariate (un)correlation coefficients known in literature, and construct new multivariate (un)correlation coefficients using Rényi entropies, which allow applications in many scientific areas.","PeriodicalId":114746,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Mathematics and Statistics","volume":"136 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Construction of Multivariate Correlation Coefficients\",\"authors\":\"J. Merker, Gregor Schuldt\",\"doi\":\"10.1145/3409915.3409920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multivariate (un)correlation coefficient maps a vector-valued random variable X = (X1,... XN) to a real number between 0 and 1, which indicates how linearly (un)correlated its components Xi, i = 1,..., N, are. In this paper, we provide a unified framework for multivariate (un)correlation coefficients known in literature, and construct new multivariate (un)correlation coefficients using Rényi entropies, which allow applications in many scientific areas.\",\"PeriodicalId\":114746,\"journal\":{\"name\":\"Proceedings of the 2020 3rd International Conference on Mathematics and Statistics\",\"volume\":\"136 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 3rd International Conference on Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3409915.3409920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409915.3409920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多元相关系数映射一个向量值随机变量X = (X1,…), N,是。本文为文献中已知的多变量相关系数提供了一个统一的框架,并利用r尼米熵构造了新的多变量相关系数,使其能够在许多科学领域得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Construction of Multivariate Correlation Coefficients
A multivariate (un)correlation coefficient maps a vector-valued random variable X = (X1,... XN) to a real number between 0 and 1, which indicates how linearly (un)correlated its components Xi, i = 1,..., N, are. In this paper, we provide a unified framework for multivariate (un)correlation coefficients known in literature, and construct new multivariate (un)correlation coefficients using Rényi entropies, which allow applications in many scientific areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信