G. Shcherbakova, V. Krylov, Valentin Abakumov, V. Brovkov, I. Kozina
{"title":"神经网络训练的亚梯度迭代法","authors":"G. Shcherbakova, V. Krylov, Valentin Abakumov, V. Brovkov, I. Kozina","doi":"10.1109/IDAACS.2011.6072774","DOIUrl":null,"url":null,"abstract":"Sub gradient iterative method in the wavelet transformed domain for neural networks training rule is proposed. This method allows to improve noise stability, to reduce local extreme and initial point search sensitiveness.","PeriodicalId":106306,"journal":{"name":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sub gradient iterative method for neural networks training\",\"authors\":\"G. Shcherbakova, V. Krylov, Valentin Abakumov, V. Brovkov, I. Kozina\",\"doi\":\"10.1109/IDAACS.2011.6072774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sub gradient iterative method in the wavelet transformed domain for neural networks training rule is proposed. This method allows to improve noise stability, to reduce local extreme and initial point search sensitiveness.\",\"PeriodicalId\":106306,\"journal\":{\"name\":\"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAACS.2011.6072774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2011.6072774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sub gradient iterative method for neural networks training
Sub gradient iterative method in the wavelet transformed domain for neural networks training rule is proposed. This method allows to improve noise stability, to reduce local extreme and initial point search sensitiveness.