通过面部和签名分析进行人员验证

Rafal Foltyniewicz, Maclef Sitnik
{"title":"通过面部和签名分析进行人员验证","authors":"Rafal Foltyniewicz, Maclef Sitnik","doi":"10.1109/ICIP.1996.560539","DOIUrl":null,"url":null,"abstract":"This article proposes a new approach for verification of people. The model consists of two parts: face and signature analysis. For face information processing morphological filtering is used to enhance the intrinsic features of a face, reduce the influence of rotation in depth, changes in facial expression, hair style, glasses and lighting conditions. The filtered images are then a subject for learning by a modified high order neural network. In signature analysis the model first traces the signature to extract the dynamical information that is usually lost in an off-line mode. After this step a neural network (neocognitron with switching attention) is used to recognize and finally verify the signature. These two parts can work independently and finally their outputs can be used to form a complex person verifier.","PeriodicalId":192947,"journal":{"name":"Proceedings of 3rd IEEE International Conference on Image Processing","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Verification of persons via face and signature analysis\",\"authors\":\"Rafal Foltyniewicz, Maclef Sitnik\",\"doi\":\"10.1109/ICIP.1996.560539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a new approach for verification of people. The model consists of two parts: face and signature analysis. For face information processing morphological filtering is used to enhance the intrinsic features of a face, reduce the influence of rotation in depth, changes in facial expression, hair style, glasses and lighting conditions. The filtered images are then a subject for learning by a modified high order neural network. In signature analysis the model first traces the signature to extract the dynamical information that is usually lost in an off-line mode. After this step a neural network (neocognitron with switching attention) is used to recognize and finally verify the signature. These two parts can work independently and finally their outputs can be used to form a complex person verifier.\",\"PeriodicalId\":192947,\"journal\":{\"name\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 3rd IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.1996.560539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 3rd IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.1996.560539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种验证人的新方法。该模型由两部分组成:人脸分析和签名分析。在人脸信息处理中,形态学滤波用于增强人脸的内在特征,减少深度旋转、面部表情变化、发型、眼镜和光照条件的影响。过滤后的图像是一个改进的高阶神经网络学习的对象。在签名分析中,该模型首先对签名进行跟踪,提取离线模式下通常丢失的动态信息。在此步骤之后,使用神经网络(具有切换注意力的新认知器)来识别并最终验证签名。这两个部分可以独立工作,最后它们的输出可以用来组成一个复杂的人验证器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Verification of persons via face and signature analysis
This article proposes a new approach for verification of people. The model consists of two parts: face and signature analysis. For face information processing morphological filtering is used to enhance the intrinsic features of a face, reduce the influence of rotation in depth, changes in facial expression, hair style, glasses and lighting conditions. The filtered images are then a subject for learning by a modified high order neural network. In signature analysis the model first traces the signature to extract the dynamical information that is usually lost in an off-line mode. After this step a neural network (neocognitron with switching attention) is used to recognize and finally verify the signature. These two parts can work independently and finally their outputs can be used to form a complex person verifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信